Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied.The foam-filled thin-walled square tube was fabricated ...Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied.The foam-filled thin-walled square tube was fabricated with aluminum tube as its shell and closed-cell Al-Mg alloy foam as its core.The results indicated that the plateau region of the load-displacement curve exhibited a marked fluctuant serration which was clearly related to the formation of folds.The longitudinal deforming mode of foam-filled square tube was the same as that of the empty tube,but the fold number of foam-filled square tube was more than that of the empty tube.The longitudinal compression load and energy absorption value of foam-filled square tube were higher than the sum of that of aluminum foam (alone) and empty tube (alone) due to the interaction between tube and filler.In transverse direction,the compression load and energy absorption ability of foam-filled square tubes were significantly lower than those in longitudinal direction.展开更多
本文主要研究分析了不规则形状孔隙对复合材料单向板横向拉伸力学性能的影响。首先通过C++编写不规则孔隙随机分布算法。然后通过Python参数化生成包含随机分布纤维和不规则孔隙的重复胞元(Repeating unit cell,RUC)。最后使用有限单元...本文主要研究分析了不规则形状孔隙对复合材料单向板横向拉伸力学性能的影响。首先通过C++编写不规则孔隙随机分布算法。然后通过Python参数化生成包含随机分布纤维和不规则孔隙的重复胞元(Repeating unit cell,RUC)。最后使用有限单元法(Finite element method)分析研究了不规则孔隙对单向板横向拉伸性能(横向弹性模量和横向拉伸强度)的影响。研究结果显示,孔隙的形状会影响单向板的初始损伤、损伤扩展和最终破坏。随着孔隙率的增大,横向弹性模量和横向拉伸强度都减小。相对于横向弹性模量,孔隙率对横向拉伸强度的影响较大。展开更多
基金Project (200412) supported by the Nippon Sheet Glass Foundation,Japan
文摘Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied.The foam-filled thin-walled square tube was fabricated with aluminum tube as its shell and closed-cell Al-Mg alloy foam as its core.The results indicated that the plateau region of the load-displacement curve exhibited a marked fluctuant serration which was clearly related to the formation of folds.The longitudinal deforming mode of foam-filled square tube was the same as that of the empty tube,but the fold number of foam-filled square tube was more than that of the empty tube.The longitudinal compression load and energy absorption value of foam-filled square tube were higher than the sum of that of aluminum foam (alone) and empty tube (alone) due to the interaction between tube and filler.In transverse direction,the compression load and energy absorption ability of foam-filled square tubes were significantly lower than those in longitudinal direction.
文摘本文主要研究分析了不规则形状孔隙对复合材料单向板横向拉伸力学性能的影响。首先通过C++编写不规则孔隙随机分布算法。然后通过Python参数化生成包含随机分布纤维和不规则孔隙的重复胞元(Repeating unit cell,RUC)。最后使用有限单元法(Finite element method)分析研究了不规则孔隙对单向板横向拉伸性能(横向弹性模量和横向拉伸强度)的影响。研究结果显示,孔隙的形状会影响单向板的初始损伤、损伤扩展和最终破坏。随着孔隙率的增大,横向弹性模量和横向拉伸强度都减小。相对于横向弹性模量,孔隙率对横向拉伸强度的影响较大。