为了提高医学图像的分割精度和分割效率,针对模糊局部C-均值(fuzzy local information C-means,FLICM)系列算法分割效率低、局部空间信息描述不够准确的问题,提出结合空间约束分水岭(spatial-constrained watershed,SCo W)的改进FLICM...为了提高医学图像的分割精度和分割效率,针对模糊局部C-均值(fuzzy local information C-means,FLICM)系列算法分割效率低、局部空间信息描述不够准确的问题,提出结合空间约束分水岭(spatial-constrained watershed,SCo W)的改进FLICM分割算法。首先对图像进行SCo W预处理分块,压缩预处理数据;然后修正细分割处理,提取各超像素块的均值特征;最后设计一种改进的FLICM算法对各超像素块进行聚类,完成图像分割。与原FLICM算法相比,结合SCo W的改进FLICM算法的分割精度更高,分割效率得到大大提升。经理论分析和实验测试表明,该改进算法更适用于医学临床诊断的需要。展开更多
为了解决传统代数计算法构造的差异图背景中含有较多噪点的问题,提高变化检测的精度,引入信息论中相对熵的概念,借助邻域处理,提出了一种基于邻域相对熵的差异图构造方法,并应用模糊局部信息C均值(fuzzy local information C-means,FLI...为了解决传统代数计算法构造的差异图背景中含有较多噪点的问题,提高变化检测的精度,引入信息论中相对熵的概念,借助邻域处理,提出了一种基于邻域相对熵的差异图构造方法,并应用模糊局部信息C均值(fuzzy local information C-means,FLICM)非监督聚类算法,实现变化信息的自动提取。通过采用4组单极化前后时相SAR影像数据集,分析对比了不同邻域形式的相对熵差异图和传统差异图的检测性能。实验结果表明,应用该方法生成的差异影像,对噪声有着较强的鲁棒性,能够满足变化检测的需求,且在定量评价的性能指标方面表现较好。其中,基于D-邻域相对熵差异图进行变化检测的结果更加突出。展开更多
为了进一步提高多时相遥感图像变化检测的精度,本文提出了一种将Shearlet变换与核主成分分析(kernel principal component analysis,KPCA)相结合用于遥感图像变化检测的算法.首先利用Shearlet变换的多尺度、多方向和各向异性等特点,对...为了进一步提高多时相遥感图像变化检测的精度,本文提出了一种将Shearlet变换与核主成分分析(kernel principal component analysis,KPCA)相结合用于遥感图像变化检测的算法.首先利用Shearlet变换的多尺度、多方向和各向异性等特点,对遥感图像进行多尺度分解,然后对分解后的数据进行核主成分分析,再进行Shearlet反变换得到含变化信息的图像,最后对该图像利用模糊局部信息C均值(fuzzy local information c-means,FLICM)聚类算法进行分割,实现遥感图像的变化检测.大量试验结果表明,与基于主成分分析(principal component analysis,PCA)、基于KPCA、基于小波变换和PCA 3种变化检测算法相比,本文算法能有效地分离出变化信息,得到更准确的变化检测图像,具有更高的变化检测精度,且对背景有较强的鲁棒性,同时也减少了计算复杂度.展开更多
文摘为了提高医学图像的分割精度和分割效率,针对模糊局部C-均值(fuzzy local information C-means,FLICM)系列算法分割效率低、局部空间信息描述不够准确的问题,提出结合空间约束分水岭(spatial-constrained watershed,SCo W)的改进FLICM分割算法。首先对图像进行SCo W预处理分块,压缩预处理数据;然后修正细分割处理,提取各超像素块的均值特征;最后设计一种改进的FLICM算法对各超像素块进行聚类,完成图像分割。与原FLICM算法相比,结合SCo W的改进FLICM算法的分割精度更高,分割效率得到大大提升。经理论分析和实验测试表明,该改进算法更适用于医学临床诊断的需要。
文摘为了解决传统代数计算法构造的差异图背景中含有较多噪点的问题,提高变化检测的精度,引入信息论中相对熵的概念,借助邻域处理,提出了一种基于邻域相对熵的差异图构造方法,并应用模糊局部信息C均值(fuzzy local information C-means,FLICM)非监督聚类算法,实现变化信息的自动提取。通过采用4组单极化前后时相SAR影像数据集,分析对比了不同邻域形式的相对熵差异图和传统差异图的检测性能。实验结果表明,应用该方法生成的差异影像,对噪声有着较强的鲁棒性,能够满足变化检测的需求,且在定量评价的性能指标方面表现较好。其中,基于D-邻域相对熵差异图进行变化检测的结果更加突出。
文摘为了进一步提高多时相遥感图像变化检测的精度,本文提出了一种将Shearlet变换与核主成分分析(kernel principal component analysis,KPCA)相结合用于遥感图像变化检测的算法.首先利用Shearlet变换的多尺度、多方向和各向异性等特点,对遥感图像进行多尺度分解,然后对分解后的数据进行核主成分分析,再进行Shearlet反变换得到含变化信息的图像,最后对该图像利用模糊局部信息C均值(fuzzy local information c-means,FLICM)聚类算法进行分割,实现遥感图像的变化检测.大量试验结果表明,与基于主成分分析(principal component analysis,PCA)、基于KPCA、基于小波变换和PCA 3种变化检测算法相比,本文算法能有效地分离出变化信息,得到更准确的变化检测图像,具有更高的变化检测精度,且对背景有较强的鲁棒性,同时也减少了计算复杂度.