期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种改进的鲁棒模糊孪生支持向量机算法 被引量:3
1
作者 周裕群 张德生 张晓 《计算机工程与应用》 CSCD 北大核心 2023年第1期140-148,共9页
针对模糊孪生支持向量机算法(FTSVM)对噪声仍然敏感,容易过拟合以及不能有效区分支持向量和离群值等问题,提出了一种改进的鲁棒模糊孪生支持向量机算法(IRFTSVM)。将改进的k近邻隶属度函数和基于类内超平面的隶属度函数结合,构造了一种... 针对模糊孪生支持向量机算法(FTSVM)对噪声仍然敏感,容易过拟合以及不能有效区分支持向量和离群值等问题,提出了一种改进的鲁棒模糊孪生支持向量机算法(IRFTSVM)。将改进的k近邻隶属度函数和基于类内超平面的隶属度函数结合,构造了一种新的混合隶属度函数;在FTSVM算法的目标函数中引入正则化项和额外的约束条件,实现了结构风险最小化,避免了逆矩阵运算,且非线性问题可以像经典的SVM算法一样直接从线性问题扩展而来;将铰链损失函数替换为pinball损失函数,以此降低对噪声的敏感性。此外,在UCI数据集和人工数据集上对该算法进行评估,并与SVM、TWSVM、FTSVM、PTSVM和TBSVM五个算法进行比较。实验结果表明,该算法的分类结果是令人满意的。 展开更多
关键词 模糊孪生支持向量机算法(ftsvm) pinball损失函数 铰链损失函数 混合隶属度函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部