期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
对流尺度集合预报与模式不确定性研究进展 被引量:19
1
作者 王璐 沈学顺 《气象》 CSCD 北大核心 2019年第8期1158-1168,共11页
本文回顾了国内外近10年来对流尺度集合预报系统以及有关模式不确定性研究的成果。对流尺度集合预报在提高局地强天气预报预警能力方面,因其可以提供丰富的概率预报信息而具有显著优势,相关研究和应用受到国内外学者和数值预报业务机构... 本文回顾了国内外近10年来对流尺度集合预报系统以及有关模式不确定性研究的成果。对流尺度集合预报在提高局地强天气预报预警能力方面,因其可以提供丰富的概率预报信息而具有显著优势,相关研究和应用受到国内外学者和数值预报业务机构的重视。相对于全球集合预报,对流尺度集合预报中有关模式不确定性的研究缺乏系统性和理论基础,成为目前研究的热点和难点。目前常用的模式扰动方法有多模式、多物理过程、多物理参数、随机物理等。这些方法在强对流事件、热带气旋强度路径等预报中得到了广泛应用,但在提高对流尺度集合离散度方面作用仍有限,主要原因在于其并没有针对性描述影响对流系统发生发展的关键物理过程的不确定性,仍然属于全球集合预报中天气尺度范畴。在回顾相关研究的同时,也提出了值得探索和研究的方向。 展开更多
关键词 对流尺度 集合预报系统 模式不确定性 模式扰动方法
下载PDF
全球集合预报位温系统偏差和随机误差结合的模式倾向扰动方法
2
作者 韩雨盟 陈静 +6 位作者 彭飞 刘昕 王婧卓 夏宇 陈法敬 吴卓亨 吴筱雯 《气象学报》 CAS CSCD 北大核心 2023年第4期592-604,共13页
传统集合预报模式扰动方法通常用来描述物理过程随机误差,但模式不可避免会存在系统偏差,为了减少模式系统偏差对集合预报的影响,利用中国气象局全球集合预报系统(CMA-GEPS),通过经验正交函数(Empirical Orthogonal Function,EOF)分解... 传统集合预报模式扰动方法通常用来描述物理过程随机误差,但模式不可避免会存在系统偏差,为了减少模式系统偏差对集合预报的影响,利用中国气象局全球集合预报系统(CMA-GEPS),通过经验正交函数(Empirical Orthogonal Function,EOF)分解方法获得系统偏差倾向,在积分过程中将系统偏差倾向扣除法与传统的随机物理倾向扰动法(Stochastically Perturbed Parameterization Tendency,SPPT)相结合,构建了全球集合预报系统偏差和随机误差结合的模式倾向扰动方法(Bias correction of bias tendency based on SPPT,SPPT-B),设计并开展了集合预报试验来探究该方法对全球集合预报的影响。结果显示:(1)经验正交函数分解的第一模态能较好地体现系统偏差的主要特征,即随预报时效线性增长、对流层高层的系统偏差比中、低层大。(2)系统偏差倾向扣除法和SPPT-B方法均可以有效降低南、北半球和热带地区高层和低层的系统偏差,且SPPT-B方法能明显改善热带地区集合离散度。(3)两套方案对对流层高层的集合预报技巧改进效果优于低层。SPPT-B能有效提高全球集合预报技巧,为发展同时考虑系统偏差和随机误差的全球集合预报模式扰动方法提供了科学依据。 展开更多
关键词 全球集合预报 系统偏差 随机误差 模式扰动方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部