期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于在线学习的移动机器人概率测量模型
1
作者
何叶
熊根良
《南昌大学学报(工科版)》
CAS
2018年第3期286-291,共6页
在概率机器人学中,基于距离传感器的概率测量模型被提出并被广泛地应用到移动机器人的定位及建图过程中。在复杂多变的外界环境下,为了得到更符合实际情况、更精确的概率测量模型,提出了一种在线学习的方法:根据实时冗余的传感器数据,...
在概率机器人学中,基于距离传感器的概率测量模型被提出并被广泛地应用到移动机器人的定位及建图过程中。在复杂多变的外界环境下,为了得到更符合实际情况、更精确的概率测量模型,提出了一种在线学习的方法:根据实时冗余的传感器数据,按真实障碍物距离进行分类得到相应的数据集,并采用期望最大化(EM)算法从各数据集中学习相应的模型内参,从而对概率测量模型持续更新与校正。实验结果表明,采用基于在线学习的概率测量模型,能得到鲁棒性更强、精度更高的定位结果。
展开更多
关键词
在线学习
EM算法
概率测量
模型
模型
内参
下载PDF
职称材料
题名
基于在线学习的移动机器人概率测量模型
1
作者
何叶
熊根良
机构
南昌大学机电工程学院
出处
《南昌大学学报(工科版)》
CAS
2018年第3期286-291,共6页
基金
国家自然科学基金资助项目(61263045
61763030)
江西省科技支撑项目(20112BBE50017)
文摘
在概率机器人学中,基于距离传感器的概率测量模型被提出并被广泛地应用到移动机器人的定位及建图过程中。在复杂多变的外界环境下,为了得到更符合实际情况、更精确的概率测量模型,提出了一种在线学习的方法:根据实时冗余的传感器数据,按真实障碍物距离进行分类得到相应的数据集,并采用期望最大化(EM)算法从各数据集中学习相应的模型内参,从而对概率测量模型持续更新与校正。实验结果表明,采用基于在线学习的概率测量模型,能得到鲁棒性更强、精度更高的定位结果。
关键词
在线学习
EM算法
概率测量
模型
模型
内参
Keywords
online learning
EM algorithm
probabilistic measurement model
intrinsic parameters
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于在线学习的移动机器人概率测量模型
何叶
熊根良
《南昌大学学报(工科版)》
CAS
2018
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部