提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean ...提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模型传递效果。此外,在该方法中,光谱变量被压缩、降维,从而使模型传递更稳定。采用该方法对谷物的近红外光谱分析模型在不同仪器之间进行传递研究。结果表明,该方法能消除仪器间的大部分差异,较好地实现模型传递效果。与正交信号校正法(orthogonal signal correction,OSC)、蒙特卡罗结合无用信息变量消除法(Monte Carlo uninformative variable elimination,MCUVE)、竞争自适应重加权采样法(competitive adaptive reweighted sampling,CARS)的比较表明,SCARS不仅在传递精度上能取得比OSC、MCUVE及CARS更好的效果,而且能有效地对光谱数据进行压缩,简化并优化传递过程。展开更多
探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校...探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正,在源仪器(SPECTRUM ONE NTS)和目标仪器1(AN-TARIS)与目标仪器2(FOSS 6500)之间的模型传递效果。实验表明:对于两台傅里叶变换型近红外光谱仪,采用局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正均可成功实现模型传递,其中局部中心化和全局中心化法的作用效果基本一致,且优于Z-score标准化法。对于傅立叶变换和光栅型近红外光谱仪,全局中心化的作用效果明显优于其它3组处理效果,且只有全局中心化预处理的正交信号校正传递后的模型可用于实际预测。展开更多
为解决近红外光谱分析中的模型传递问题,本研究提出了一元线性回归直接标准化算法(Simple linear regression direct standardization,SLRDS)。为验证算法的有效性,采用玉米样品的近红外光谱集进行实验,并与传统的直接标准化算法(Direct...为解决近红外光谱分析中的模型传递问题,本研究提出了一元线性回归直接标准化算法(Simple linear regression direct standardization,SLRDS)。为验证算法的有效性,采用玉米样品的近红外光谱集进行实验,并与传统的直接标准化算法(Direct standardization,DS)、分段直接标准化算法(Piecewise direct standardization,PDS)进行比较。实验结果表明,SLRDS算法不仅能够有效消除近红外光谱仪之间的差异,很好地实现玉米样品的PLS校正模型在3台仪器之间的共享,而且与DS和PDS算法相比,具有传递性能高、模型简单及所求参数少等优点。展开更多
文摘提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling,SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模型传递效果。此外,在该方法中,光谱变量被压缩、降维,从而使模型传递更稳定。采用该方法对谷物的近红外光谱分析模型在不同仪器之间进行传递研究。结果表明,该方法能消除仪器间的大部分差异,较好地实现模型传递效果。与正交信号校正法(orthogonal signal correction,OSC)、蒙特卡罗结合无用信息变量消除法(Monte Carlo uninformative variable elimination,MCUVE)、竞争自适应重加权采样法(competitive adaptive reweighted sampling,CARS)的比较表明,SCARS不仅在传递精度上能取得比OSC、MCUVE及CARS更好的效果,而且能有效地对光谱数据进行压缩,简化并优化传递过程。
文摘探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正,在源仪器(SPECTRUM ONE NTS)和目标仪器1(AN-TARIS)与目标仪器2(FOSS 6500)之间的模型传递效果。实验表明:对于两台傅里叶变换型近红外光谱仪,采用局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正均可成功实现模型传递,其中局部中心化和全局中心化法的作用效果基本一致,且优于Z-score标准化法。对于傅立叶变换和光栅型近红外光谱仪,全局中心化的作用效果明显优于其它3组处理效果,且只有全局中心化预处理的正交信号校正传递后的模型可用于实际预测。
文摘为解决近红外光谱分析中的模型传递问题,本研究提出了一元线性回归直接标准化算法(Simple linear regression direct standardization,SLRDS)。为验证算法的有效性,采用玉米样品的近红外光谱集进行实验,并与传统的直接标准化算法(Direct standardization,DS)、分段直接标准化算法(Piecewise direct standardization,PDS)进行比较。实验结果表明,SLRDS算法不仅能够有效消除近红外光谱仪之间的差异,很好地实现玉米样品的PLS校正模型在3台仪器之间的共享,而且与DS和PDS算法相比,具有传递性能高、模型简单及所求参数少等优点。