-
题名级联型P-RBM神经网络的人脸检测
被引量:11
- 1
-
-
作者
叶学义
陈雪婷
陈华华
顾亚风
吕秋云
-
机构
杭州电子科技大学模式识别与信息安全实验室
-
出处
《中国图象图形学报》
CSCD
北大核心
2016年第7期875-885,共11页
-
基金
国家自然科学基金项目(60802047
60702018)~~
-
文摘
目的针对非理想条件下快速准确的人脸检测问题,提出一种基于概率态多层受限玻尔兹曼机(RBM)级联神经网络的检测方法。方法它采用RBM中神经元的概率态表征来模拟人脑神经元连续分布的激活状态,并且利用多层P-RBM(概率态RBM)级联来仿真人脑对视觉的层次学习模式,又以逐层递减隐藏层神经元数来控制网络规模,最后采用分层训练和整体优化的机制来缓解鲁棒性和准确性的矛盾。结果在LFW、FERET、PKUSVD-B以及CAS-PEAL数据集上的测试都实现了优于现有典型算法的检测性能。对于单人脸检测,相比于Adaboost算法,将漏检率降低了2.92%;对于多人脸检测,相比于结合肤色的Adaboost算法,将误检率降低了14.9%,同时漏检率降低了5.0%,检测时间降低了50%。结论无论是静态单张人脸,还是复杂条件下视频多人脸检测,该方法不仅在误检率和漏检率上表现更好,而且具有较快的检测速度,同时对于旋转人脸检测具有较强的鲁棒性。针对基于肤色的多人脸检测研究,该方法能显著降低误检率。
-
关键词
人脸检测
受限玻尔兹曼机(rbm)
概率态受限玻尔兹曼机(p-rbm)
神经网络
-
Keywords
face detection
restricted Boltzmann machine (rbm)
probability state-restricted Bohzmann machine ( p- rbm)
neural network
-
分类号
TP391.4
[自动化与计算机技术—计算机应用技术]
-