阿尔茨海默症(Alzheimer’s Disease, AD)是一种最常见的神经退行性疾病,其症状具体表现为记忆和思维能力的退化,同时AD是受遗传因素影响很大的疾病,目前对AD仍无有效的治疗手段,许多研究基于单一模态数据进行早期诊断的研究效果不理想...阿尔茨海默症(Alzheimer’s Disease, AD)是一种最常见的神经退行性疾病,其症状具体表现为记忆和思维能力的退化,同时AD是受遗传因素影响很大的疾病,目前对AD仍无有效的治疗手段,许多研究基于单一模态数据进行早期诊断的研究效果不理想。为此,研究基于磁共振影像(MRI)和单核苷酸多态性(Single Nucleotide Polymorphim, SNP)两种模态数据提出一种概率分类器加权的多模态集成学习新框架,为分类器提供更丰富、全面的信息,从而提高AD诊断分类的准确率和稳定性。研究方法在AD vs NC、MCIc vs NC和MCInc vs MCIc的5次5折交叉验证实验结果平均准确率分别高达80%、76%、70%,结果表明研究提出的多模态集成学习模型与利用单一模态数据的分类模型相比更具有优势。展开更多
文摘阿尔茨海默症(Alzheimer’s Disease, AD)是一种最常见的神经退行性疾病,其症状具体表现为记忆和思维能力的退化,同时AD是受遗传因素影响很大的疾病,目前对AD仍无有效的治疗手段,许多研究基于单一模态数据进行早期诊断的研究效果不理想。为此,研究基于磁共振影像(MRI)和单核苷酸多态性(Single Nucleotide Polymorphim, SNP)两种模态数据提出一种概率分类器加权的多模态集成学习新框架,为分类器提供更丰富、全面的信息,从而提高AD诊断分类的准确率和稳定性。研究方法在AD vs NC、MCIc vs NC和MCInc vs MCIc的5次5折交叉验证实验结果平均准确率分别高达80%、76%、70%,结果表明研究提出的多模态集成学习模型与利用单一模态数据的分类模型相比更具有优势。