期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多目标滤波中的多传感器概率假设密度算法 被引量:7
1
作者 杨可 傅忠谦 +1 位作者 王剑亭 林日钊 《电子与信息学报》 EI CSCD 北大核心 2012年第6期1368-1373,共6页
多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PG... 多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PGFL)推导出了多传感器PHD滤波递归式,进而提出粒子标记法多传感器贯序蒙特卡洛PHD(SMC-PHD)滤波等价实现算法,降低了多传感器PHD滤波的计算复杂度。最后给出了算法的具体实现,得到了良好的多目标数目和可跟踪多目标状态的估计。 展开更多
关键词 多传感器滤波 概率假设密度 概率产生 假设模型 粒子标记法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部