期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于扩展自然序树的概化关联规则增量挖掘方法 被引量:8
1
作者 毛宇星 施伯乐 《计算机研究与发展》 EI CSCD 北大核心 2012年第3期598-606,共9页
概化关联规则挖掘作为数据挖掘领域一个重要的拓展性研究课题,首先提出了一种概化扩展自然序树(generalized extended canonical-order tree,GECT)结构及其增量挖掘算法GECT-IM.该算法对原始分类事务数据库只扫描一次,就可以将所有交易... 概化关联规则挖掘作为数据挖掘领域一个重要的拓展性研究课题,首先提出了一种概化扩展自然序树(generalized extended canonical-order tree,GECT)结构及其增量挖掘算法GECT-IM.该算法对原始分类事务数据库只扫描一次,就可以将所有交易信息映射至一棵压缩格式的GECT,然后通过对更新交易数据集扫描得到更新数据集中各项集的计数,结合相关性质及运算就可以发现大部分更新后的概化频繁项集;其次,针对GECT规模较大以及GECT-IM 算法仍然可能需要遍历初始GECT树的局限,在界定数据库更新和重构概念的基础上,基于一种可量化度量的准最小支持度阈值,提出了一种改进的准频繁概化扩展自然序树(pre-large generalized extended canonical-order tree,PGECT)结构及其增量挖掘算法PGECT-IM.由于有效避免了对初始GECT进行遍历的情形,从而进一步提升了概化关联规则增量挖掘效率.实验证明,提出的概化关联规则增量挖掘算法 GECT-IM 及其优化算法PGECT-IM,比现有增量挖掘算法具有更高的挖掘效率和更好的扩展性. 展开更多
关键词 分类数据 关联规则 增量挖掘 扩展自然 准频繁扩展自然
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部