期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法
1
作者 滕明 侯亚威 李伟杰 《现代雷达》 CSCD 北大核心 2024年第5期26-30,共5页
复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,... 复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。 展开更多
关键词 多扩展目标跟踪 椭圆随机曲面 势概率假设密度滤波器 无迹变换
下载PDF
基于均值漂移和双层群结构模型的群目标GMPHD滤波 被引量:5
2
作者 宋骊平 程轩 姬红兵 《控制与决策》 EI CSCD 北大核心 2019年第1期137-143,共7页
针对不可分辨群目标跟踪算法中群合并、交叉及分裂前后群目标数出现漏估及量测划分数多、计算量大两个问题,提出一种基于均值漂移(MS)和双层群结构(BGS)模型的群目标高斯混合概率假设密度(GMPHD)滤波算法.该算法采用MS进行量测划分,同... 针对不可分辨群目标跟踪算法中群合并、交叉及分裂前后群目标数出现漏估及量测划分数多、计算量大两个问题,提出一种基于均值漂移(MS)和双层群结构(BGS)模型的群目标高斯混合概率假设密度(GMPHD)滤波算法.该算法采用MS进行量测划分,同时依据第2层群结构反馈回的群信息判断是否需要进行2次划分;然后,采用基于椭圆随机超曲面模型(RHM)的群目标GMPHD滤波进行预测更新和状态提取;最后,使用提取出的群目标状态进行第二层群结构更新,并将所得群信息反馈回量测划分步.仿真对比实验表明,所提出算法可获得更高的实时性,能够解决群目标合并、交叉及分裂前后群数目的漏估问题. 展开更多
关键词 群目标跟踪 均值漂移 椭圆随机曲面模型 双层群结构模型 高斯混合概率假设密度滤波
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部