期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用随机森林和纹理特征的森林类型识别 被引量:24
1
作者 吕杰 郝宁燕 +2 位作者 李崇贵 史晓亮 李宗泽 《遥感信息》 CSCD 北大核心 2017年第6期109-114,共6页
针对利用遥感影像进行森林类型识别容易出现树种误分和模型复杂的问题,以高分一号卫星影像为数据源,结合遥感判读样地、植被指数、纹理信息以及地形因子等多源数据,构建最小距离分类模型、支持向量机分类模型和随机森林分类模型,对黑龙... 针对利用遥感影像进行森林类型识别容易出现树种误分和模型复杂的问题,以高分一号卫星影像为数据源,结合遥感判读样地、植被指数、纹理信息以及地形因子等多源数据,构建最小距离分类模型、支持向量机分类模型和随机森林分类模型,对黑龙江凉水自然保护区森林优势树种进行分类。结果表明,基于随机森林模型的分类结果总精度和Kappa系数分别为81.01%和0.76,较支持向量机分类方法有明显提高。该研究为提高我国高分辨率数据的自给率和森林资源的有效管理提供了一定的参考价值。 展开更多
关键词 GF-1影像 随机森林 森林类型识别 支持向量机 纹理特征
下载PDF
基于星载激光雷达数据和支持向量分类机方法的森林类型识别 被引量:6
2
作者 刘美爽 邢艳秋 +2 位作者 李立存 杨超 王蕊 《东北林业大学学报》 CAS CSCD 北大核心 2014年第2期124-128,共5页
以长白山汪清林区为例,分析了星载激光雷达(ICESat-GLAS)数据在森林类型识别上的应用效果。采用软件Matlab和IDL对原始二进制数据进行处理,得到GLAS回波波形图;进一步提取与森林类型相关的波形特征参数,作为支持向量分类机(C-SVC)的输入... 以长白山汪清林区为例,分析了星载激光雷达(ICESat-GLAS)数据在森林类型识别上的应用效果。采用软件Matlab和IDL对原始二进制数据进行处理,得到GLAS回波波形图;进一步提取与森林类型相关的波形特征参数,作为支持向量分类机(C-SVC)的输入量,进行森林类型识别,并采用K-折交叉验证方法对核函数选择进行评价。结果表明:C-SVC分类方法能够识别阔叶林和针叶林2种森林类型,识别精度达到85.24%。 展开更多
关键词 星载激光雷达 支持向量分类机 森林类型识别
下载PDF
联合多时相GF-6 WFV和Sentinel-2的森林类型识别 被引量:1
3
作者 叶青龙 欧阳勋志 +2 位作者 黄诚 李坚锋 潘萍 《江西农业大学学报》 CAS CSCD 北大核心 2024年第2期389-400,共12页
【目的】我国南方地区多云雨,地型较破碎,森林类型精细识别较为困难,探讨联合多源、多时相的遥感数据对森林类型识别具有重要意义。【方法】以江西省信丰县为研究区,基于2019年森林资源二类调查数据,将森林划分为松林、杉木林、阔叶林... 【目的】我国南方地区多云雨,地型较破碎,森林类型精细识别较为困难,探讨联合多源、多时相的遥感数据对森林类型识别具有重要意义。【方法】以江西省信丰县为研究区,基于2019年森林资源二类调查数据,将森林划分为松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地等8种类型,利用随机森林算法比较GF-6 WFV和Sentinel-2最佳时相相同波段(紫/深蓝、蓝、绿、红、近红外、红边)和不同波段(黄边、短波红外)的森林类型识别能力,构建联合光谱特征集。联合多时相GF-6 WFV和Sentinel-2,构建多时相植被指数特征集,结合联合光谱特征集、纹理特征和地形特征,通过随机森林和递归消除法构建特征变量优选数据集进行森林类型识别,利用混淆矩阵和森林类型的实际分布对识别结果进行精度验证。【结果】(1)GF-6 WFV蓝、绿和红波段组合的总体精度为58.31%,分别加入紫、近红外、红边、黄边和Sentinel-2短波红外波段后,其总体精度分别提高1.99%、8.90%、10.71%、1.50%和14.10%;Sentinel-2蓝、绿和红波段组合的总体精度为54.68%,分别加入深蓝、近红外、红边、短波红外和GF-6 WFV黄边波段后,其总体精度分别提高3.30%、10.82%、12.92%、17.31%和3.97%。(2)特征变量优选数据集的总体精度和Kappa系数为80.80%和75.56%,贡献程度大小依次为GF-6 WFV多时相植被指数、Sentinel-2多时相植被指数、GF-6 WFV光谱特征、Sentinel-2光谱特征、地形特征和纹理特征,贡献率分别为40.44%、23.23%、18.12%、10.21%、4.61%和3.39%。(3)松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地的制图精度分别为86.97%、85.60%、88.61%、9.43%、19.01%、53.60%、86.90%和82.56%,用户精度分别为81.42%、79.79%、77.57%、71.43%、81.82%、67.00%、87.74%和82.88%,识别结果与研究区实际森林类型分布较吻合。【结论� 展开更多
关键词 GF-6 WFV Sentinel-2 森林类型识别 随机森林
下载PDF
基于支持向量机的EO-1 Hyperion遥感图像分类研究
4
作者 毛学刚 郑淼 +3 位作者 郭文茜 马岩岩 胡俊凯 杨天野 《安徽农业科学》 CAS 2014年第15期4892-4894,4900,共4页
以EO-1 Hyperion高光谱遥感数据为基础,对其进行大气校正、几何校正、滤波等处理,采用支持向量机分类方法对其进行分类,选择不同的核函数,主要有线性核、多项式核、径向基核、Sigmoid核,其余采用相同参数设置,进而比较不同核函数在EO-1 ... 以EO-1 Hyperion高光谱遥感数据为基础,对其进行大气校正、几何校正、滤波等处理,采用支持向量机分类方法对其进行分类,选择不同的核函数,主要有线性核、多项式核、径向基核、Sigmoid核,其余采用相同参数设置,进而比较不同核函数在EO-1 Hyperion数据分类中的效果。结果表明,采用支持向量机方法对研究区域的EO-1 Hyperion遥感数据进行分类,采用不同的核函数对分类结果影响不大。 展开更多
关键词 HYPERION 支持向量机(SVM) 森林类型识别 分类方法 核函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部