农业系统模型参数优化存在很高的不确定性,是模型应用研究的重点和难点。该研究利用自动优化程序PEST(parameter estimation software)对根系水质模型(root zone water quality model,RZWQM)中土壤参数(土壤水力学参数和根系生长参数)...农业系统模型参数优化存在很高的不确定性,是模型应用研究的重点和难点。该研究利用自动优化程序PEST(parameter estimation software)对根系水质模型(root zone water quality model,RZWQM)中土壤参数(土壤水力学参数和根系生长参数)和作物遗传参数进行了优化,结果表明PEST优化模拟结果明显优于传统试错法的校正结果,且具有较高的参数优化效率。模型参数优化不确定性评价表明校正数据和参数初始值的选择、土壤水力学参数估算方法、不同类型参数间的相互作用以及优化目标方程(误差来源计算)都明显影响模型模拟结果。以上过程中土壤水力学参数优化值差异较小,但其土壤水分特征曲线却明显不同。通过以上评价分析提高了RZWQM相关参数优化结果的可靠性及其模拟功能,降低了模型参数优化的不确定性,为PEST优化其他模型参数提供了重要支持。展开更多
文摘农业系统模型参数优化存在很高的不确定性,是模型应用研究的重点和难点。该研究利用自动优化程序PEST(parameter estimation software)对根系水质模型(root zone water quality model,RZWQM)中土壤参数(土壤水力学参数和根系生长参数)和作物遗传参数进行了优化,结果表明PEST优化模拟结果明显优于传统试错法的校正结果,且具有较高的参数优化效率。模型参数优化不确定性评价表明校正数据和参数初始值的选择、土壤水力学参数估算方法、不同类型参数间的相互作用以及优化目标方程(误差来源计算)都明显影响模型模拟结果。以上过程中土壤水力学参数优化值差异较小,但其土壤水分特征曲线却明显不同。通过以上评价分析提高了RZWQM相关参数优化结果的可靠性及其模拟功能,降低了模型参数优化的不确定性,为PEST优化其他模型参数提供了重要支持。