The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome...The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome biomass.The rhizome diameter is an important index parameter of rhizome biomass.In this study,we propose an estimation of rhizome diameters based on ground penetrating radar(GPR)-based reverse time migration(RTM)imaging technology.First,the spatial distribution of shallow rhizomes is simulated using the finite difference time domain method.The simulation data are examined via RTM imaging and single-channel rhizome analysis to obtain the rhizome index parameters:Δh,the width of the maximum positive peak amplitude measured at an amplitude of zero,andΔH,the distance between the zero-amplitude position above the largest positive peak in the shallow region and the zero-amplitude position below the largest positive peak in the deeper region.The experiments of physical models verify the effectiveness of the two parameters(Δh andΔH).and indicate that the values ofΔh andΔH are independent of the rhizome burial depth;instead,they are only related to the diameter of the rhizome.For both the numerical simulations and the physical model experiment,the estimation errors ofΔh andΔH for the rhizome diameters can be constrained to less than 6%and 5%,respectively,which shows that the estimation of the rhizome diameters using GPR based RTM imaging technology is reasonable and effective and its high estimation accuracy meets the technical requirements.展开更多
基金supported by the Open Foundation of the State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Gant No.SHJT-16-30.18)National Natural Science Foundation of China(No.41602364)+1 种基金National Key R&D Program of China(No.2016YFC0801404)State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing)(No.SKLCRSM16DCB14,SKLCRSM17DC01)。
文摘The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome biomass.The rhizome diameter is an important index parameter of rhizome biomass.In this study,we propose an estimation of rhizome diameters based on ground penetrating radar(GPR)-based reverse time migration(RTM)imaging technology.First,the spatial distribution of shallow rhizomes is simulated using the finite difference time domain method.The simulation data are examined via RTM imaging and single-channel rhizome analysis to obtain the rhizome index parameters:Δh,the width of the maximum positive peak amplitude measured at an amplitude of zero,andΔH,the distance between the zero-amplitude position above the largest positive peak in the shallow region and the zero-amplitude position below the largest positive peak in the deeper region.The experiments of physical models verify the effectiveness of the two parameters(Δh andΔH).and indicate that the values ofΔh andΔH are independent of the rhizome burial depth;instead,they are only related to the diameter of the rhizome.For both the numerical simulations and the physical model experiment,the estimation errors ofΔh andΔH for the rhizome diameters can be constrained to less than 6%and 5%,respectively,which shows that the estimation of the rhizome diameters using GPR based RTM imaging technology is reasonable and effective and its high estimation accuracy meets the technical requirements.