期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于AS-OCT图像的核性白内障多级排序分类算法研究
1
作者
方利鑫
周愉
+5 位作者
顾愿愿
蒋紫园
牟磊
王阳
刘芳
赵一天
《中华实验眼科杂志》
CAS
CSCD
北大核心
2024年第3期264-270,共7页
目的探讨基于眼前节光学相干断层扫描(AS-OCT)图像的核性白内障智能辅助分级算法对白内障分级的诊断价值。方法采用诊断试验研究方法,收集2020年11月至2021年9月间同济大学附属第十人民医院电子病例系统中核性白内障患者939例1608眼的AS...
目的探讨基于眼前节光学相干断层扫描(AS-OCT)图像的核性白内障智能辅助分级算法对白内障分级的诊断价值。方法采用诊断试验研究方法,收集2020年11月至2021年9月间同济大学附属第十人民医院电子病例系统中核性白内障患者939例1608眼的AS-OCT图像资料,所有资料均符合临床阅片清晰度要求。其中男398例664眼,女541例944眼,年龄18~94岁,平均年龄(65.7±18.6)岁。由3名经验丰富的临床医生基于晶状体混浊分类系统(LOCSⅢ分级系统),对所收集的AS-OCT图像进行1~6级人工标注。构建一种基于多级排序的全局-局部白内障分级算法,该算法包含5个基本的二元分类全局-局部网络(GL-Net),每个GL-Net聚合白内障核区域、原始图像等多尺度信息进行核性白内障分级。基于消融实验和模型对比试验,采用准确率、精确率、灵敏度、F1指标及Kappa系数对模型性能进行评价,且所有结果均通过五折交叉验证。结果模型在核性白内障数据集上的准确率、精确率、灵敏度、F1、Kappa分别为87.81%、88.88%、88.33%、88.51%、85.22%。消融实验结果表明,ResNet18结合局部特征和全局特征进行多级排序分类,模型在准确率、精确率、灵敏度、F1、Kappa指标上均有提升。与ResNet34、VGG16、Ranking-CNN、MRF-Net模型比较,本研究模型各性能指标均有提升。结论基于深度学习的AS-OCT核性白内障图像多级排序分类算法对白内障分级具有较高的准确度,有望辅助提高眼科医生对核性白内障的诊断精度以及效率。
展开更多
关键词
深度学习
眼前节光学相干断层扫描
核
性
白内障
分级
多尺度融合
多级排序算法
下载PDF
职称材料
题名
基于AS-OCT图像的核性白内障多级排序分类算法研究
1
作者
方利鑫
周愉
顾愿愿
蒋紫园
牟磊
王阳
刘芳
赵一天
机构
浙江工业大学机械工程学院
同济大学附属第十人民医院眼科
宁波慈溪生物医学工程研究所
中国科学院宁波材料技术与工程研究所
中国科学院空天信息创新研究院
出处
《中华实验眼科杂志》
CAS
CSCD
北大核心
2024年第3期264-270,共7页
基金
浙江省博士后科研项目(ZJ2022118)
上海市科委项目(20142203200)
+1 种基金
上海市级医院临床研究培育项目(SHDC12019X30)
上海市第十人民医院临床研究中心资助项目(YNCR2B010)。
文摘
目的探讨基于眼前节光学相干断层扫描(AS-OCT)图像的核性白内障智能辅助分级算法对白内障分级的诊断价值。方法采用诊断试验研究方法,收集2020年11月至2021年9月间同济大学附属第十人民医院电子病例系统中核性白内障患者939例1608眼的AS-OCT图像资料,所有资料均符合临床阅片清晰度要求。其中男398例664眼,女541例944眼,年龄18~94岁,平均年龄(65.7±18.6)岁。由3名经验丰富的临床医生基于晶状体混浊分类系统(LOCSⅢ分级系统),对所收集的AS-OCT图像进行1~6级人工标注。构建一种基于多级排序的全局-局部白内障分级算法,该算法包含5个基本的二元分类全局-局部网络(GL-Net),每个GL-Net聚合白内障核区域、原始图像等多尺度信息进行核性白内障分级。基于消融实验和模型对比试验,采用准确率、精确率、灵敏度、F1指标及Kappa系数对模型性能进行评价,且所有结果均通过五折交叉验证。结果模型在核性白内障数据集上的准确率、精确率、灵敏度、F1、Kappa分别为87.81%、88.88%、88.33%、88.51%、85.22%。消融实验结果表明,ResNet18结合局部特征和全局特征进行多级排序分类,模型在准确率、精确率、灵敏度、F1、Kappa指标上均有提升。与ResNet34、VGG16、Ranking-CNN、MRF-Net模型比较,本研究模型各性能指标均有提升。结论基于深度学习的AS-OCT核性白内障图像多级排序分类算法对白内障分级具有较高的准确度,有望辅助提高眼科医生对核性白内障的诊断精度以及效率。
关键词
深度学习
眼前节光学相干断层扫描
核
性
白内障
分级
多尺度融合
多级排序算法
Keywords
Deep learning
Anterior segment optical coherence tomography
Nuclear cataract grading
Multi-scale fusion
Multi-level ranking algorithm
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
R776.1 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于AS-OCT图像的核性白内障多级排序分类算法研究
方利鑫
周愉
顾愿愿
蒋紫园
牟磊
王阳
刘芳
赵一天
《中华实验眼科杂志》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部