Techniques for detecting glucose are developing at a breathtaking speed because diabetes mellitus can cause many serious complications, such as blindness, high blood pressure heart disease and kidney failure. Herein, ...Techniques for detecting glucose are developing at a breathtaking speed because diabetes mellitus can cause many serious complications, such as blindness, high blood pressure heart disease and kidney failure. Herein, water sol- uble NaYF4:Eu^3+@Ag core-shell nanocrystals for glucose de- tection with lower detection limit have been successfully de- veloped, using NaYF4:Eu^3+ cores as the energy donors and Ag shells as the efficient quenchers through energy transfer. After immobilization of glucose oxidase (GOx) on the sur- face of NaYF4:Eu^3+@Ag core-shell nanocrystals, the Ag shells can be decomposed in the presence of glucose, accompanied by down-shifting luminescence recovery. The limit of detec- tion of NaYF4:Eu^3+@Ag was 0.12 μmol L^-1. Therefore, the NaYF4:Eu^3+@Ag can be easily extended to the detection of a variety of H2O2-involved analytes.展开更多
以甲基丙烯酸丁酯、苯乙烯、八甲基环四硅氧烷(D4)为分散相,偶氮二异丁腈(azobisisobutyronitrile,AIBN)为引发剂,通过超浓乳液聚合制各具有一定核一壳结构的复合高分子材料.采用透射电镜(transmission electron microscopy,TEM)观测了...以甲基丙烯酸丁酯、苯乙烯、八甲基环四硅氧烷(D4)为分散相,偶氮二异丁腈(azobisisobutyronitrile,AIBN)为引发剂,通过超浓乳液聚合制各具有一定核一壳结构的复合高分子材料.采用透射电镜(transmission electron microscopy,TEM)观测了材料的形态特征,并表征了共聚物的吸水率和接触角.结果表明,所制备的超浓乳液体系具有良好的稳定性,聚合材料耐水性较好.展开更多
基金supported by the National Natural Science Foundation of China(21471050 and 21501052)the China Postdoctoral Science Foundation(2015M570304)+2 种基金the Postdoctoral Science Foundation of Heilongjiang Province(LBH-TZ06019)the Natural Science Foundation of Heilongjiang Province(ZD201301d)the Science Foundation for Excellent Youth of Harbin City of China (2016RQQXJ099)
文摘Techniques for detecting glucose are developing at a breathtaking speed because diabetes mellitus can cause many serious complications, such as blindness, high blood pressure heart disease and kidney failure. Herein, water sol- uble NaYF4:Eu^3+@Ag core-shell nanocrystals for glucose de- tection with lower detection limit have been successfully de- veloped, using NaYF4:Eu^3+ cores as the energy donors and Ag shells as the efficient quenchers through energy transfer. After immobilization of glucose oxidase (GOx) on the sur- face of NaYF4:Eu^3+@Ag core-shell nanocrystals, the Ag shells can be decomposed in the presence of glucose, accompanied by down-shifting luminescence recovery. The limit of detec- tion of NaYF4:Eu^3+@Ag was 0.12 μmol L^-1. Therefore, the NaYF4:Eu^3+@Ag can be easily extended to the detection of a variety of H2O2-involved analytes.
文摘采用电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)引发含氟丙烯酸酯单体在纳米SiO2表面上的聚合反应,合成核-壳型含氟硅聚合物乳液,并用于棉织物的拒水拒油整理。聚合反应动力学表明酯单体在SiO2表面的聚合是一个活性可控的过程,所得聚合物分子量大小可控、分子量分布较窄。利用FT-IR、1 H NMR、19F NMR、XPS以及TEM等对聚合物乳液的结构和形态进行表征分析,证明其核-壳结构及氟的存在。所合成的纳米级聚合物乳液通过与织物表面形成微纳二元阶层结构,提高其拒水拒油性。
文摘以甲基丙烯酸丁酯、苯乙烯、八甲基环四硅氧烷(D4)为分散相,偶氮二异丁腈(azobisisobutyronitrile,AIBN)为引发剂,通过超浓乳液聚合制各具有一定核一壳结构的复合高分子材料.采用透射电镜(transmission electron microscopy,TEM)观测了材料的形态特征,并表征了共聚物的吸水率和接触角.结果表明,所制备的超浓乳液体系具有良好的稳定性,聚合材料耐水性较好.