The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruc...The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.展开更多
A robust tree-ring-width chronology was developed from two Pinus tabulaeformis sampling sites in the source of the Fenhe River,Shanxi Province,China.Based on the tree-ring-width indices,a 157-year long Palmer Drought ...A robust tree-ring-width chronology was developed from two Pinus tabulaeformis sampling sites in the source of the Fenhe River,Shanxi Province,China.Based on the tree-ring-width indices,a 157-year long Palmer Drought Severity Index(PDSI) was reconstructed,which explains 53.7% of the variance of the modeled PDSI over the common period 1957-2008.The drought periods in the study area include 1914-1931 and 1970 to the present,whereas the wet periods were 1866-1892 and 1932-1969.The drought of 1914-1931 was a severe long-lasting drought with a low inter-annual variability,and the drought of 1970-2009 was an overall long-term drought with a high inter-annual variability.The period of 1866-1892 is a continuously wet period with a low inter-annual variability and the period of 1932-1969 is an overall long-term wet period with a high inter-annual variability.The reconstructed PDSI series in the source of the Fenhe River shows synchronous variations with the regional drought/wetness indices.Spatial correlation analyses indicate that the higher correlations lie exclusively in the Fenhe River Basin.This indicates that the reconstructed PDSI has regional representativeness and can represent the drought history of the entire Fenhe River Basin to some extent.Furthermore,the reconstructed PDSI matches with the variability of the per unit yield of summer grain crops in Shanxi Province very well and they have significant correlation.From a long-term perspective the reconstructed PDSI series could supply scientific and valuable information to the water resources management and then help the sustainable development in agricultural production,economic development,and ecosystem balance.展开更多
To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summ...To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001058, 41001009, 40971119 and 40890052)the China Postdoctoral Science Foundation (Grant Nos. 201003194)
文摘The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.
基金supported by National Natural Science Foundation of China (Grant Nos. 40901060,41023006,and 40890051)National Basic Research Program of China (Grant No. 2010CB833405)the State Key Laboratory of Loess and Quaternary Geology and the Sino-Swedish Tree-Ring Research Center (SISTRR) Contribution
文摘A robust tree-ring-width chronology was developed from two Pinus tabulaeformis sampling sites in the source of the Fenhe River,Shanxi Province,China.Based on the tree-ring-width indices,a 157-year long Palmer Drought Severity Index(PDSI) was reconstructed,which explains 53.7% of the variance of the modeled PDSI over the common period 1957-2008.The drought periods in the study area include 1914-1931 and 1970 to the present,whereas the wet periods were 1866-1892 and 1932-1969.The drought of 1914-1931 was a severe long-lasting drought with a low inter-annual variability,and the drought of 1970-2009 was an overall long-term drought with a high inter-annual variability.The period of 1866-1892 is a continuously wet period with a low inter-annual variability and the period of 1932-1969 is an overall long-term wet period with a high inter-annual variability.The reconstructed PDSI series in the source of the Fenhe River shows synchronous variations with the regional drought/wetness indices.Spatial correlation analyses indicate that the higher correlations lie exclusively in the Fenhe River Basin.This indicates that the reconstructed PDSI has regional representativeness and can represent the drought history of the entire Fenhe River Basin to some extent.Furthermore,the reconstructed PDSI matches with the variability of the per unit yield of summer grain crops in Shanxi Province very well and they have significant correlation.From a long-term perspective the reconstructed PDSI series could supply scientific and valuable information to the water resources management and then help the sustainable development in agricultural production,economic development,and ecosystem balance.
基金supported by the National Natural Science Foundation of China(41201046,40890051),KZZDEW-04-01the State Key Laboratory of Loess and Quaternary Geology(SKLLQG),and the West Doctoral Foundation of Chinese Academy of Sciences.This is a SISTRR contribution(No.29)
文摘To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.