基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus...基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。展开更多
基于激光雷达(light detection and ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数是精准林业发展的必然趋势。本文研究面向激光点云提出了一种融合基于晶格投影的深度学习网络,以及面向提取的枝干点云的树木模型...基于激光雷达(light detection and ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数是精准林业发展的必然趋势。本文研究面向激光点云提出了一种融合基于晶格投影的深度学习网络,以及面向提取的枝干点云的树木模型骨架重建的方法。该深度学习网络包括旋转不变性模块、晶格投影与重心插值模块,多尺度变换与卷积操作层,通过将旋转变换后的点云晶格投影到三个坐标平面上再分别重心插值获得变换系数,解决了三维点云因排列无序而造成空间卷积困难的问题。以海南多类树木为研究对象,首先,把带枝叶标签的林木点云基团带入构造的深度学习网络中训练网络参数,实现测试样本中的林木数据的枝叶分离。其次,对分类后的树木枝干点云垂直分层并空间聚类,获取每层的聚类中心点并按相邻层中心点距离最小原则实现骨架链表构造,同时采用自适应随机抽样一致(random sample consensus,RANSAC)方法来计算的圆柱体拟合半径,以重建树木的各级枝干。最后,根据中心点连通的链表结构以及角度变化最小准则自动识别树木中的主枝干和各个一级分枝。通过与实测数据比对验证表明,深度学习枝叶分类准确率为91.31%,高于传统的机器学习分类方法7%左右。算法得到的橡胶树一级枝干直径与实测值比对为:决定系数R^(2)=0.92,均方根误差RMSE=0.64 cm,相对均方根误差rRMSE=6.39%;相应的一级枝干与主枝干的分枝角与实测值比对为:R^(2)=0.91,RMSE=3.32°,rRMSE=7.81%。本文研究设计了深度学习网络与计算机图形学的算法快速精准从地基点云中重建树木的骨架模型,精度吻合实际测量值,具有一定推广价值。展开更多
树木的几何建模在林木性状评价、森林动态经营管理与可视化研究中具有重要意义。现今,从激光雷达(Light Detection And Ranging,LiDAR)数据中重建树体三维模型并精准获取林木空间枝干结构参数是数字林业发展的必然趋势。该研究提出了一...树木的几何建模在林木性状评价、森林动态经营管理与可视化研究中具有重要意义。现今,从激光雷达(Light Detection And Ranging,LiDAR)数据中重建树体三维模型并精准获取林木空间枝干结构参数是数字林业发展的必然趋势。该研究提出了一种深度学习与计算机图形学相融合的树木骨架重建与参数反演方法。该方法以PR107、CATAS 7-20-59、CATAS 8-79三个品种的橡胶树为实验对象,首先,采用背包移动激光雷达获取三个橡胶树品种的样地数据,并通过体素剖分和数据增广策略来构建橡胶树训练样本集。其次,构造由四层特征编码层和特征解码层所组成的点云分类深度学习网络,并包含优化的PointConv模块与不同尺度的特征插值模块,以实现在多尺度条件下,全面考虑点云的全局和局部优化特征,引导网络实现枝叶点云的精确分类。最后,面向分类后的枝干点云,运用计算机图形学的空间连通性算法与圆柱拟合策略,重建树木骨架模型,并自动解决叶子点云与对应的一级枝干归属问题,进而在叶团簇尺度下开展对单株树的精细描述与参数反演。通过对三块橡胶树测试样地的验证和与实测值的比对表明,该研究提出的深度学习网络枝叶分类总体准确率在90.32%以上。骨架重建与叶团簇分析结果显示,PR107品种橡胶树具有较为发散的树冠、最大的分枝夹角和叶团簇体积;CATAS 7-20-59品种橡胶树冠呈花瓶型,分枝夹角和叶团簇体积较小;而CATAS 8-79品种橡胶树尽管胸径最粗,但不耐寒害处于落叶期导致冠积最小。同时,反演得到的橡胶树一级枝干直径与实测值比对为:决定系数R^(2)不低于0.94,均方根误差(Root Mean Square Error,RMSE)小于3.01 cm;主枝干与一级枝干的分枝角为:决定系数R^(2)不低于0.91,均方根误差RMSE不高于4.94°。同时发现橡胶树一级枝干的直径与对应的叶团簇体积呈正相关分布。该研究�展开更多
文摘基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。