以层流对撞扩散火焰为基础,利用层流火焰面模型(laminar flamelet model)的方法生成层流火焰面数据库,分别采用预先设定的几率密度函数(propabality density function,PDF)模型和混合物分数-湍流频率的联合几率密度函数输运模型,将...以层流对撞扩散火焰为基础,利用层流火焰面模型(laminar flamelet model)的方法生成层流火焰面数据库,分别采用预先设定的几率密度函数(propabality density function,PDF)模型和混合物分数-湍流频率的联合几率密度函数输运模型,将火焰而方法应用于甲烷/空气湍流射流扩散火焰结构的模拟计算中.两个模型的计算结果和实验结果进行了比较和分析.展开更多
The effects of heat loss on the structure of laminar flamelets,which are the constitutive elements of turbulent flames under the most common operating conditions,are investigated for typical aeronautical gas-turbine o...The effects of heat loss on the structure of laminar flamelets,which are the constitutive elements of turbulent flames under the most common operating conditions,are investigated for typical aeronautical gas-turbine operating conditions at take-off.The magnitude of heat loss is quantified via the "enthalpy defect" measured with respect to an adiabatic flame.A procedure to generate laminar flamelets with an assigned enthalpy defect at the boundaries is devised and applied to nonpremixed propane/air flames,as propane reproduces the essential features of higher hydrocarbon combustion.It is found,contrary to commonly held beliefs,that the enthalpy defect has a significant effect on the concentration not only of minor species,but also of main reaction products.Such effects are found in general to be more pronounced for fuel-rich conditions.An impact is anticipated on the formation rate of nitric oxides.The effects of scalar dissipation rate are also discussed.展开更多
文摘以层流对撞扩散火焰为基础,利用层流火焰面模型(laminar flamelet model)的方法生成层流火焰面数据库,分别采用预先设定的几率密度函数(propabality density function,PDF)模型和混合物分数-湍流频率的联合几率密度函数输运模型,将火焰而方法应用于甲烷/空气湍流射流扩散火焰结构的模拟计算中.两个模型的计算结果和实验结果进行了比较和分析.
文摘The effects of heat loss on the structure of laminar flamelets,which are the constitutive elements of turbulent flames under the most common operating conditions,are investigated for typical aeronautical gas-turbine operating conditions at take-off.The magnitude of heat loss is quantified via the "enthalpy defect" measured with respect to an adiabatic flame.A procedure to generate laminar flamelets with an assigned enthalpy defect at the boundaries is devised and applied to nonpremixed propane/air flames,as propane reproduces the essential features of higher hydrocarbon combustion.It is found,contrary to commonly held beliefs,that the enthalpy defect has a significant effect on the concentration not only of minor species,but also of main reaction products.Such effects are found in general to be more pronounced for fuel-rich conditions.An impact is anticipated on the formation rate of nitric oxides.The effects of scalar dissipation rate are also discussed.