期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于群智能体深度强化学习的模块化机器人自重构算法 被引量:2
1
作者 王翰墨 郑世杰 +2 位作者 徐若楠 郭斌 吴磊 《计算机科学》 CSCD 北大核心 2023年第6期266-273,共8页
模块化机器人是由一定数量、具有独立功能的标准模块组合而成的。自重构问题是目前模块化机器人研究领域的热点与难点。传统的图论算法或者搜索算法在模块数量较多、复杂度较大时,无法在多项式时间内寻找到通用最优解。文中从群智能体... 模块化机器人是由一定数量、具有独立功能的标准模块组合而成的。自重构问题是目前模块化机器人研究领域的热点与难点。传统的图论算法或者搜索算法在模块数量较多、复杂度较大时,无法在多项式时间内寻找到通用最优解。文中从群智能体深度强化学习的角度出发,将每个同构模块视为具有学习与感知能力的单智能体,提出了基于QMIX的模块化机器人自重构算法。针对该算法,设计了一种新型的奖励函数,并在限制智能体的动作空间的基础上,实现了智能体并行化移动,在一定程度上解决了多智能体之间的协调合作问题,从而实现了从初始构型向目标构型的转变。实验以9个模块为例,对比了该算法与基于A*的传统搜索算法在成功率以及平均步数上的差异。实验结果表明,在时间步数限制合理的情况下,基于QMIX的模块化机器人自重构算法的成功率能够达到95%以上,两种算法的平均步数大约在12步左右,QMIX自重构算法能够逼近传统算法的效果。 展开更多
关键词 模块化机器人 自重构 群智能体协作 深度强化学习 构型空间运动空间
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部