针对海上风电高压直流传输效率和可靠性不高的问题,把精简矩阵变换器(reduced matrix converter,RMC)应用到海上风力发电系统中,深入分析了RMC换流器拓扑及其双极性空间矢量调制策略。为了提高海上风电高压直流输电系统在岸上交流电网...针对海上风电高压直流传输效率和可靠性不高的问题,把精简矩阵变换器(reduced matrix converter,RMC)应用到海上风力发电系统中,深入分析了RMC换流器拓扑及其双极性空间矢量调制策略。为了提高海上风电高压直流输电系统在岸上交流电网电压跌落等故障情况下的持续运行能力,提出了基于RMC换流器的海上风电多端口高压直流输电系统(MTDC,multi-terminal high voltage direct current)拓扑,分析了RMC换流器、岸上VSC换流器、超级电容器储能3个端口之间的协调控制策略,通过超级电容器储能实现了系统的功率平衡控制,提高了系统的低电压穿越能力。文章对一个三端口RMC-MTDC进行了Matlab仿真,实验结果验证了所提控制策略的正确性和可行性。展开更多
为标定光交叉芯片驱动电压,控制光交叉芯片实现光路由功能,提出并搭建了基于多通道DAC(Digital to Analog Converter)阵列的控制驱动电路系统。系统主要由控制系统模块、多路驱动电路模块及上位机控制模块构成。控制电路和驱动电路具有...为标定光交叉芯片驱动电压,控制光交叉芯片实现光路由功能,提出并搭建了基于多通道DAC(Digital to Analog Converter)阵列的控制驱动电路系统。系统主要由控制系统模块、多路驱动电路模块及上位机控制模块构成。控制电路和驱动电路具有调校简单、可双极性输出、输出路数多、加电精确度较高的特点,解决了当前驱动电路工作繁琐、加电极性单一、加电路数少、精度差的问题。上位机控制模块除了可控制驱动电路施加控制电压外,还可接收来自数据采集装置采集到的光功率信号作为控制驱动系统的反馈信号。通过分析控制电压与光功率之间的关系,可得到最佳的光交叉芯片控制驱动电压。系统测试实验结果表明,该系统能提供高精确度的双极性驱动电压,有效地对光交叉芯片进行驱动。可在较短的时间内标定出光开关的控制电压,完全可以满足有源光交叉芯片控制中对驱动电压的需求。该系统在光交叉芯片控制方面具有一定的应用价值。展开更多
文摘针对海上风电高压直流传输效率和可靠性不高的问题,把精简矩阵变换器(reduced matrix converter,RMC)应用到海上风力发电系统中,深入分析了RMC换流器拓扑及其双极性空间矢量调制策略。为了提高海上风电高压直流输电系统在岸上交流电网电压跌落等故障情况下的持续运行能力,提出了基于RMC换流器的海上风电多端口高压直流输电系统(MTDC,multi-terminal high voltage direct current)拓扑,分析了RMC换流器、岸上VSC换流器、超级电容器储能3个端口之间的协调控制策略,通过超级电容器储能实现了系统的功率平衡控制,提高了系统的低电压穿越能力。文章对一个三端口RMC-MTDC进行了Matlab仿真,实验结果验证了所提控制策略的正确性和可行性。
文摘为标定光交叉芯片驱动电压,控制光交叉芯片实现光路由功能,提出并搭建了基于多通道DAC(Digital to Analog Converter)阵列的控制驱动电路系统。系统主要由控制系统模块、多路驱动电路模块及上位机控制模块构成。控制电路和驱动电路具有调校简单、可双极性输出、输出路数多、加电精确度较高的特点,解决了当前驱动电路工作繁琐、加电极性单一、加电路数少、精度差的问题。上位机控制模块除了可控制驱动电路施加控制电压外,还可接收来自数据采集装置采集到的光功率信号作为控制驱动系统的反馈信号。通过分析控制电压与光功率之间的关系,可得到最佳的光交叉芯片控制驱动电压。系统测试实验结果表明,该系统能提供高精确度的双极性驱动电压,有效地对光交叉芯片进行驱动。可在较短的时间内标定出光开关的控制电压,完全可以满足有源光交叉芯片控制中对驱动电压的需求。该系统在光交叉芯片控制方面具有一定的应用价值。