期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EM算法的极大似然分布式量化估计融合新方法 被引量:6
1
作者 徐振华 黄建国 张群飞 《电子与信息学报》 EI CSCD 北大核心 2011年第4期977-981,共5页
该文针对水下目标探测中的多传感器分布式量化估计融合问题,建立了分布式量化估计融合模型,在考虑信道噪声且其统计特性不完全已知条件下,充分利用EM算法在观测数据缺失时参数估计的优越性,提出了一种基于期望极大化(EM)算法的极大似然... 该文针对水下目标探测中的多传感器分布式量化估计融合问题,建立了分布式量化估计融合模型,在考虑信道噪声且其统计特性不完全已知条件下,充分利用EM算法在观测数据缺失时参数估计的优越性,提出了一种基于期望极大化(EM)算法的极大似然分布式量化估计融合新方法。该方法将未知的水声信道噪声参数以及局部量化器量化概率建模为EM算法中二元高斯混合模型参数,利用极大似然估计方法的估计不变性得到目标参数的估计融合结果。仿真实验表明:该方法在局部传感器观测样本数目大于5000和信噪比大于6 dB时与已有理想信道条件下的估计方法性能相当,该方法为水下目标探测中分布式量化估计融合系统的工程实现提供了理论依据。 展开更多
关键词 水下目标探测 期望极大化(em)算法 估计融合 极大似然
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部