基于两个体比较的交互式遗传算法(Interactive Genetic Algorithm based on paired comparison,PC-IGA)允许用户在每次评估过程中比较两个个体并从中选择一个优胜者,以代替传统的用户评分方式,从而减轻用户的精神压力.但是,PC-IGA中用...基于两个体比较的交互式遗传算法(Interactive Genetic Algorithm based on paired comparison,PC-IGA)允许用户在每次评估过程中比较两个个体并从中选择一个优胜者,以代替传统的用户评分方式,从而减轻用户的精神压力.但是,PC-IGA中用户比较次数太多,加重了用户的生理疲劳.为此,本文提出一种新的用户评估方式——锦标赛选择,并给出锦标赛选择交互式遗传算法(Interactive Genetic Algorithm Based on Tournament Selection,TS-IGA)的关键技术和实现步骤.将该算法应用于服装色彩优化系统,研究了种群规模和子种群规模的选择对算法性能的影响.最后,将该算法与PC-IGA进行对比实验,结果表明本文提出的算法在选择合适的子种群规模的情况下,能有效减少用户的比较次数和算法收敛时间,从而减轻用户疲劳.展开更多
文摘基于两个体比较的交互式遗传算法(Interactive Genetic Algorithm based on paired comparison,PC-IGA)允许用户在每次评估过程中比较两个个体并从中选择一个优胜者,以代替传统的用户评分方式,从而减轻用户的精神压力.但是,PC-IGA中用户比较次数太多,加重了用户的生理疲劳.为此,本文提出一种新的用户评估方式——锦标赛选择,并给出锦标赛选择交互式遗传算法(Interactive Genetic Algorithm Based on Tournament Selection,TS-IGA)的关键技术和实现步骤.将该算法应用于服装色彩优化系统,研究了种群规模和子种群规模的选择对算法性能的影响.最后,将该算法与PC-IGA进行对比实验,结果表明本文提出的算法在选择合适的子种群规模的情况下,能有效减少用户的比较次数和算法收敛时间,从而减轻用户疲劳.