期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
有关Ramanujan展开的结果的综述 被引量:1
1
作者 齐田芳 《理论数学》 2020年第4期339-344,共6页
Ramanujan和是现代数论中的一个重要工具,近年来也在信息科学中得到较多应用。这主要是基于匈牙利数论学家Wintner和1976年法国数论学家Delange的结果:整数环上的单变量算术函数都可以通过Ramanujan和加以展开。这类似于经典分析中的Fou... Ramanujan和是现代数论中的一个重要工具,近年来也在信息科学中得到较多应用。这主要是基于匈牙利数论学家Wintner和1976年法国数论学家Delange的结果:整数环上的单变量算术函数都可以通过Ramanujan和加以展开。这类似于经典分析中的Fourier展开。随后这一结论被Ushiroya和匈牙利数论学家T&#243;th推广到了多变量情形。基于郑志勇教授的工作,最近我们证明了定义在有限域上一元多项式环 上的一大类算术函数(包括单变量和多变量情形)也可以通过Carlitz和Cohen定义的Ramanujan和加以展开。本文将对上面所得到的有关Ramanujan展开的结果进行综述。本文所有结果的证明都能在文末的参考文献中找到。 展开更多
关键词 算术函数 Ramanujan和 ZETA函数 有限一元多项式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部