期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的弱监督语义分割方法综述 被引量:1
1
作者 项伟康 周全 +5 位作者 崔景程 莫智懿 吴晓富 欧卫华 王井东 刘文予 《中国图象图形学报》 CSCD 北大核心 2024年第5期1146-1168,共23页
语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成... 语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成本巨大,限制了其在诸如自动驾驶、医学图像分析以及工业控制等实际场景中的应用。为了降低数据的标注成本并进一步拓宽语义分割的应用场景,研究者们越来越关注基于深度学习的弱监督语义分割方法,希望通过诸如图像级标注、最小包围盒标注、线标注和点标注等弱标注信息实现图像的像素级分割预测。首先对语义分割任务进行了简要介绍,并分析了全监督语义分割所面临的困境,从而引出弱监督语义分割。然后,介绍了相关数据集和评估指标。接着,根据弱标注的类型和受关注程度,从图像级标注、其他弱标注以及大模型辅助这3个方面回顾和讨论了弱监督语义分割的研究进展。其中,第2类弱监督语义分割方法包括基于最小包围盒、线和点标注的弱监督语义分割。最后,分析了弱监督语义分割领域存在的问题与挑战,并就其未来可能的研究方向提出建议,旨在进一步推动弱监督语义分割领域研究的发展。 展开更多
关键词 语义分割 深度学习 弱监督语义分割(WSSS) 图像级标注 最小包围标注 线标注 标注 大模型
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部