期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的弱监督语义分割方法综述
被引量:
1
1
作者
项伟康
周全
+5 位作者
崔景程
莫智懿
吴晓富
欧卫华
王井东
刘文予
《中国图象图形学报》
CSCD
北大核心
2024年第5期1146-1168,共23页
语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成...
语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成本巨大,限制了其在诸如自动驾驶、医学图像分析以及工业控制等实际场景中的应用。为了降低数据的标注成本并进一步拓宽语义分割的应用场景,研究者们越来越关注基于深度学习的弱监督语义分割方法,希望通过诸如图像级标注、最小包围盒标注、线标注和点标注等弱标注信息实现图像的像素级分割预测。首先对语义分割任务进行了简要介绍,并分析了全监督语义分割所面临的困境,从而引出弱监督语义分割。然后,介绍了相关数据集和评估指标。接着,根据弱标注的类型和受关注程度,从图像级标注、其他弱标注以及大模型辅助这3个方面回顾和讨论了弱监督语义分割的研究进展。其中,第2类弱监督语义分割方法包括基于最小包围盒、线和点标注的弱监督语义分割。最后,分析了弱监督语义分割领域存在的问题与挑战,并就其未来可能的研究方向提出建议,旨在进一步推动弱监督语义分割领域研究的发展。
展开更多
关键词
语义分割
深度学习
弱监督语义分割(WSSS)
图像级
标注
最小
包围
盒
标注
线
标注
点
标注
大模型
原文传递
题名
基于深度学习的弱监督语义分割方法综述
被引量:
1
1
作者
项伟康
周全
崔景程
莫智懿
吴晓富
欧卫华
王井东
刘文予
机构
南京邮电大学通信与信息工程学院
梧州学院广西高校智能软件重点实验室
贵州师范大学大数据与计算机科学学院
百度
华中科技大学电子信息与通信学院
出处
《中国图象图形学报》
CSCD
北大核心
2024年第5期1146-1168,共23页
基金
国家自然科学基金项目(61876093,62262005)
广西高校智能软件重点实验室开放研究项目(2023B01)。
文摘
语义分割是计算机视觉领域的基本任务,旨在为每个像素分配语义类别标签,实现对图像的像素级理解。得益于深度学习的发展,基于深度学习的全监督语义分割方法取得了巨大进展。然而,这些方法往往需要大量带有像素级标注的训练数据,标注成本巨大,限制了其在诸如自动驾驶、医学图像分析以及工业控制等实际场景中的应用。为了降低数据的标注成本并进一步拓宽语义分割的应用场景,研究者们越来越关注基于深度学习的弱监督语义分割方法,希望通过诸如图像级标注、最小包围盒标注、线标注和点标注等弱标注信息实现图像的像素级分割预测。首先对语义分割任务进行了简要介绍,并分析了全监督语义分割所面临的困境,从而引出弱监督语义分割。然后,介绍了相关数据集和评估指标。接着,根据弱标注的类型和受关注程度,从图像级标注、其他弱标注以及大模型辅助这3个方面回顾和讨论了弱监督语义分割的研究进展。其中,第2类弱监督语义分割方法包括基于最小包围盒、线和点标注的弱监督语义分割。最后,分析了弱监督语义分割领域存在的问题与挑战,并就其未来可能的研究方向提出建议,旨在进一步推动弱监督语义分割领域研究的发展。
关键词
语义分割
深度学习
弱监督语义分割(WSSS)
图像级
标注
最小
包围
盒
标注
线
标注
点
标注
大模型
Keywords
semantic segmentation
deep learning
weakly supervised semantic segmentation(WSSS)
image-level annotation
bounding-box annotation
scribble annotation
point annotation
large-scale model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的弱监督语义分割方法综述
项伟康
周全
崔景程
莫智懿
吴晓富
欧卫华
王井东
刘文予
《中国图象图形学报》
CSCD
北大核心
2024
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部