利用最大最小爬山算法构建肺癌患者的预后模型,指导肺癌预后评价。以SEER(surveillance,epidemiology,and end results)数据库中2008年至2014年期间被确诊为肺癌的患者组成数据集,首先利用卡方检验、Logistic回归分析方法对数据集中的...利用最大最小爬山算法构建肺癌患者的预后模型,指导肺癌预后评价。以SEER(surveillance,epidemiology,and end results)数据库中2008年至2014年期间被确诊为肺癌的患者组成数据集,首先利用卡方检验、Logistic回归分析方法对数据集中的变量进行特征选择;然后,在训练集上利用最大最小爬山算法建立肺癌患者的预后模型,并在测试集上对患者进行5年后生存情况预测;最后,选择Logistic回归、人工神经网络、决策树、支持向量机方法和本研究模型在测试集上进行分类实验对比。最终结果显示本研究模型对肺癌患者5年后生存情况的预测准确率高于其他方法。展开更多
针对混合算法学习贝叶斯网络结构存在易陷入局部最优、搜索精度低等问题,提出了采用蝙蝠算法和约束结合的贝叶斯网络结构混合算法。首先应用最大最小父子(Max-min parents and children,MMPC)节点集合构建初始无向网络的框架,然后利用...针对混合算法学习贝叶斯网络结构存在易陷入局部最优、搜索精度低等问题,提出了采用蝙蝠算法和约束结合的贝叶斯网络结构混合算法。首先应用最大最小父子(Max-min parents and children,MMPC)节点集合构建初始无向网络的框架,然后利用蝙蝠算法进行评分搜索并确定网络结构中边的方向。最后应用上述算法学习ALARM网,并和最大最小爬山(the max-min hill climbing,MMHC)算法,贪婪搜索算法相比较,结果表明在增加边、反转边、删除边以及结构海明距离方面都有不同程度的减少,表明改进算法具有较强的学习能力和良好的收敛速度。展开更多
文摘利用最大最小爬山算法构建肺癌患者的预后模型,指导肺癌预后评价。以SEER(surveillance,epidemiology,and end results)数据库中2008年至2014年期间被确诊为肺癌的患者组成数据集,首先利用卡方检验、Logistic回归分析方法对数据集中的变量进行特征选择;然后,在训练集上利用最大最小爬山算法建立肺癌患者的预后模型,并在测试集上对患者进行5年后生存情况预测;最后,选择Logistic回归、人工神经网络、决策树、支持向量机方法和本研究模型在测试集上进行分类实验对比。最终结果显示本研究模型对肺癌患者5年后生存情况的预测准确率高于其他方法。
文摘针对混合算法学习贝叶斯网络结构存在易陷入局部最优、搜索精度低等问题,提出了采用蝙蝠算法和约束结合的贝叶斯网络结构混合算法。首先应用最大最小父子(Max-min parents and children,MMPC)节点集合构建初始无向网络的框架,然后利用蝙蝠算法进行评分搜索并确定网络结构中边的方向。最后应用上述算法学习ALARM网,并和最大最小爬山(the max-min hill climbing,MMHC)算法,贪婪搜索算法相比较,结果表明在增加边、反转边、删除边以及结构海明距离方面都有不同程度的减少,表明改进算法具有较强的学习能力和良好的收敛速度。