期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征优选决策树模型的河套灌区土地利用分类
被引量:
13
1
作者
孙亚楠
李仙岳
+3 位作者
史海滨
崔佳琪
马红雨
王维刚
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第13期242-251,共10页
为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响。该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利...
为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响。该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利用河套灌区永济灌域实测数据和Google earth影像对不同组合方式的土地利用模型进行数量结构和空间布局的验证,筛选出最优的土地利用遥感模型并确定最佳识别期。结果表明:在不同月份Green(绿波段)和Ent(熵Entropy)分别与波段和纹理特征变量中的因子所含有的信息重复率最高,需剔除,归一化植被指数(Normalized Differential Vegetation Index,NDVI)和增强型植被指数(Enhanced Vegetation Index,EVI)在今后的研究中可选其一应用;与单一特征变量相比,不同特征变量组合后能提高模型精度,平均总体精度和Kappa系数分别提高了6.72个百分点和0.09。采用8月影像数据构建的遥感模型精度最高,最优遥感模型的特征变量组合方式为波段+光谱指数+纹理特征,总体精度、Kappa系数、制图精度和用户精度分别为80.23%、0.74、80.95%和86.26%,且减少了未利用地和居民工况用地空间布局的错分。通过综合比较,该研究区土地利用最佳识别期为8月,其次为9月。利用8月最优遥感模型(最佳识别期和最优组合)识别的耕地、林地、草地、未利用地、水域和居民工矿用地的制图精度分别为96.83%、73.33%、70.00%、65.52%、100.00%和80.00%,用户精度分别为76.62%、100.00%、82.35%、82.61%、100.00%和80.00%。因此可选用8月最优模型应用于长时间序列的土地利用类型识别。
展开更多
关键词
土地利用
遥感
光谱特征
纹理特征
最佳
识别
期
组合方式
决策树
下载PDF
职称材料
题名
基于特征优选决策树模型的河套灌区土地利用分类
被引量:
13
1
作者
孙亚楠
李仙岳
史海滨
崔佳琪
马红雨
王维刚
机构
内蒙古农业大学水利与土木建筑工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第13期242-251,共10页
基金
国家自然科学基金项目(51539005)
内蒙古水利科技重大专项(NSK2017-M1)
国家重点研发计划项目(2016YFC0400205)。
文摘
为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响。该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利用河套灌区永济灌域实测数据和Google earth影像对不同组合方式的土地利用模型进行数量结构和空间布局的验证,筛选出最优的土地利用遥感模型并确定最佳识别期。结果表明:在不同月份Green(绿波段)和Ent(熵Entropy)分别与波段和纹理特征变量中的因子所含有的信息重复率最高,需剔除,归一化植被指数(Normalized Differential Vegetation Index,NDVI)和增强型植被指数(Enhanced Vegetation Index,EVI)在今后的研究中可选其一应用;与单一特征变量相比,不同特征变量组合后能提高模型精度,平均总体精度和Kappa系数分别提高了6.72个百分点和0.09。采用8月影像数据构建的遥感模型精度最高,最优遥感模型的特征变量组合方式为波段+光谱指数+纹理特征,总体精度、Kappa系数、制图精度和用户精度分别为80.23%、0.74、80.95%和86.26%,且减少了未利用地和居民工况用地空间布局的错分。通过综合比较,该研究区土地利用最佳识别期为8月,其次为9月。利用8月最优遥感模型(最佳识别期和最优组合)识别的耕地、林地、草地、未利用地、水域和居民工矿用地的制图精度分别为96.83%、73.33%、70.00%、65.52%、100.00%和80.00%,用户精度分别为76.62%、100.00%、82.35%、82.61%、100.00%和80.00%。因此可选用8月最优模型应用于长时间序列的土地利用类型识别。
关键词
土地利用
遥感
光谱特征
纹理特征
最佳
识别
期
组合方式
决策树
Keywords
land use
remote sensing
spectral features
texture features
optimal identification period
combination method
decision tree
分类号
S127 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征优选决策树模型的河套灌区土地利用分类
孙亚楠
李仙岳
史海滨
崔佳琪
马红雨
王维刚
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部