期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征优选决策树模型的河套灌区土地利用分类 被引量:13
1
作者 孙亚楠 李仙岳 +3 位作者 史海滨 崔佳琪 马红雨 王维刚 《农业工程学报》 EI CAS CSCD 北大核心 2021年第13期242-251,共10页
为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响。该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利... 为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响。该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利用河套灌区永济灌域实测数据和Google earth影像对不同组合方式的土地利用模型进行数量结构和空间布局的验证,筛选出最优的土地利用遥感模型并确定最佳识别期。结果表明:在不同月份Green(绿波段)和Ent(熵Entropy)分别与波段和纹理特征变量中的因子所含有的信息重复率最高,需剔除,归一化植被指数(Normalized Differential Vegetation Index,NDVI)和增强型植被指数(Enhanced Vegetation Index,EVI)在今后的研究中可选其一应用;与单一特征变量相比,不同特征变量组合后能提高模型精度,平均总体精度和Kappa系数分别提高了6.72个百分点和0.09。采用8月影像数据构建的遥感模型精度最高,最优遥感模型的特征变量组合方式为波段+光谱指数+纹理特征,总体精度、Kappa系数、制图精度和用户精度分别为80.23%、0.74、80.95%和86.26%,且减少了未利用地和居民工况用地空间布局的错分。通过综合比较,该研究区土地利用最佳识别期为8月,其次为9月。利用8月最优遥感模型(最佳识别期和最优组合)识别的耕地、林地、草地、未利用地、水域和居民工矿用地的制图精度分别为96.83%、73.33%、70.00%、65.52%、100.00%和80.00%,用户精度分别为76.62%、100.00%、82.35%、82.61%、100.00%和80.00%。因此可选用8月最优模型应用于长时间序列的土地利用类型识别。 展开更多
关键词 土地利用 遥感 光谱特征 纹理特征 最佳识别 组合方式 决策树
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部