In machining processes, errors of rough in dimension, shape and location lead to changes in processing quantity, and the material of a workpiece may not be uniform. For these reasons, cutting force changes in machinin...In machining processes, errors of rough in dimension, shape and location lead to changes in processing quantity, and the material of a workpiece may not be uniform. For these reasons, cutting force changes in machining, making the machining system deformable. Consequently errors in workpieces may occur. This is called the error reflection phenomenon. Generally, such errors can be reduced through repeated processing while using appropriate processing quantity in each processing based on operator's experience.According to the theory of error reflection, the error reflection coefficient indicates the extent to which errors of rough influence errors of workpieces. It is related to several factors such as machining condition, hardness of the workpiece, etc. This non-linear relation cannot be worked out using any formula. RBF neural network can approximate a non-linear function within any precision and be trained fast. In this paper, non-linear mapping ability of a fuzzy-neural network is utilized to approximate the non-linear relation. After training of the network with swatch collection obtained in experiments, an appropriate output can be obtained when an input is given. In this way, one can get the required number of processing and the processing quantity each time from the machining condition. Angular rigidity of a machining system,hardness of workpiece, etc., can be input in a form of fuzzy values. Feasibility in solving error reflection and optimizing machining parameters with a RBF neural network is verified by a simulation test with MATLAB.展开更多
文摘In machining processes, errors of rough in dimension, shape and location lead to changes in processing quantity, and the material of a workpiece may not be uniform. For these reasons, cutting force changes in machining, making the machining system deformable. Consequently errors in workpieces may occur. This is called the error reflection phenomenon. Generally, such errors can be reduced through repeated processing while using appropriate processing quantity in each processing based on operator's experience.According to the theory of error reflection, the error reflection coefficient indicates the extent to which errors of rough influence errors of workpieces. It is related to several factors such as machining condition, hardness of the workpiece, etc. This non-linear relation cannot be worked out using any formula. RBF neural network can approximate a non-linear function within any precision and be trained fast. In this paper, non-linear mapping ability of a fuzzy-neural network is utilized to approximate the non-linear relation. After training of the network with swatch collection obtained in experiments, an appropriate output can be obtained when an input is given. In this way, one can get the required number of processing and the processing quantity each time from the machining condition. Angular rigidity of a machining system,hardness of workpiece, etc., can be input in a form of fuzzy values. Feasibility in solving error reflection and optimizing machining parameters with a RBF neural network is verified by a simulation test with MATLAB.