期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO v3的相似外部特征人员检测算法 被引量:1
1
作者 梁思源 王平 +2 位作者 罗凡波 徐桂菲 王伟 《平顶山学院学报》 2020年第2期47-54,共8页
针对目前异常行为检测中相似特征人员检测方法稀缺、人员和特征检测准确度低、特征量较少,而相似外部特征往往意味着团队行动及潜在异常行为等问题,提出一种基于深度学习的相似外部特征人员检测算法.首先采用加入Fast Guided Filter的... 针对目前异常行为检测中相似特征人员检测方法稀缺、人员和特征检测准确度低、特征量较少,而相似外部特征往往意味着团队行动及潜在异常行为等问题,提出一种基于深度学习的相似外部特征人员检测算法.首先采用加入Fast Guided Filter的暗通道去雾算法对INRIA数据库图像进行前期处理,得到质量更佳的训练样本;然后用得到的样本对改进的YOLO v3进行训练;最后将提取出来的行人进行颜色特征和几种纹理特征提取,组合之后用ELM进行分类.仿真结果表明:加入Fast Guided Filter的暗通道去雾算法明显优于单纯的暗通道去雾算法,保留了更多的边缘和纹理特征,在雾天和强曝光下效果尤为明显.相比HOG+SVM方法,该算法对人员检测的误检率和漏检率都大大降低,且具有较好的实时性.最后ELM分类的准确性能够达到96. 104%. 展开更多
关键词 暗通yolo网络 颜色特征 纹理特征 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部