期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于代理模型估值不确定度的昂贵多目标优化问题研究
1
作者 张晶 裴东兴 +1 位作者 马瑾 沈大伟 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第1期110-116,共7页
针对代理模型辅助的多目标优化算法中个体不确定度之间相互冲突的问题,本文提出个体每个目标估值不确定的填充准则,同时,为了减少训练模型消耗的计算资源,提出基于非支配排序的样本选择算法。为了验证该算法的可行性,采用DTLZ和WFG测试... 针对代理模型辅助的多目标优化算法中个体不确定度之间相互冲突的问题,本文提出个体每个目标估值不确定的填充准则,同时,为了减少训练模型消耗的计算资源,提出基于非支配排序的样本选择算法。为了验证该算法的可行性,采用DTLZ和WFG测试函数进行测试,得出结果与近些年发表5种具有代表性的同类型算法进行对比,结果说明该算法可以有效的解决昂贵高维高目标优化问题。 展开更多
关键词 进化算法 昂贵目标优化问题 代理模型 填充准则 不确定度
下载PDF
数据驱动的贝叶斯SVR自适应建模及昂贵约束多目标代理优化
2
作者 林成龙 马义中 +1 位作者 肖甜丽 熊佳玮 《控制与决策》 EI CSCD 北大核心 2023年第10期2977-2986,共10页
实际工程中的多目标优化问题往往具有黑箱特性且需要耗时的功能性评估,采用传统的进化优化方法求解,存在计算成本高昂且难以实现的问题.考虑代理优化方法在处理需要功能性评估工程设计问题中的高效性,提出一种小样本数据驱动下的贝叶斯... 实际工程中的多目标优化问题往往具有黑箱特性且需要耗时的功能性评估,采用传统的进化优化方法求解,存在计算成本高昂且难以实现的问题.考虑代理优化方法在处理需要功能性评估工程设计问题中的高效性,提出一种小样本数据驱动下的贝叶斯SVR自适应建模及昂贵约束多目标代理优化方法.该方法在实现过程中选取贝叶斯SVR模型以减少功能性评估过程的昂贵仿真成本,利用最大化约束期望改进矩阵聚合策略进行新设计方案选取,并通过小样本信息的不断更新实现数据驱动下的贝叶斯SVR模型自适应更新和逐步优化.贝叶斯SVR模型具有强的边界刻画能力及预测不确定性度量功能,可为新样本挑选提供预测精度保障及潜在的改进方向.所提出的切比雪夫距离和曼哈顿距离聚合策略从样本填充的改进范围考虑,使其具有较强的改进边界探索能力,在多变量优化问题中具有计算复杂度低、适用性强的特点.测试函数及工程实例结果表明:1)所提出的方法可在小样本条件下有效减少昂贵仿真成本,提升昂贵约束多目标问题的优化效率;2)获取昂贵约束多目标问题的Pareto前沿在收敛性、多样性及空间分布性方面均具有一定优势. 展开更多
关键词 数据驱动 贝叶斯SVR模型 昂贵目标优化问题 约束期望改进矩阵 距离聚合策略 可行性概率
原文传递
基于径向空间划分的昂贵多目标进化算法 被引量:3
3
作者 顾清华 周煜丰 +1 位作者 李学现 阮顺领 《自动化学报》 EI CAS CSCD 北大核心 2022年第10期2564-2584,共21页
为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空... 为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空间信息保留对种群贡献更高的个体;之后由径向空间中个体的位置分布决定下一步应该选择哪些个体进行真实评估;最后,采用一种双档案管理策略维护代理模型的质量.数值实验和现实问题上的结果表明,与5种先进算法相比,该算法在解决昂贵多目标优化问题时能够提供更高质量的解. 展开更多
关键词 昂贵目标优化问题 高斯过程 径向投影 双档案管理策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部