期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Flatten-CNN的语音带宽扩展研究 被引量:2
1
作者 杨俊美 雷杨 陈习坤 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期87-94,共8页
现有基于深度学习的语音带宽扩展算法中,时域算法语音特征提取不够精确,训练数据量大;频域算法对数功率谱特征提取未重视帧与帧之间的信息关联,频率轴数为奇数,不便于加深网络深度,且忽略时域信息;时频两域算法模型相对复杂。针对以上问... 现有基于深度学习的语音带宽扩展算法中,时域算法语音特征提取不够精确,训练数据量大;频域算法对数功率谱特征提取未重视帧与帧之间的信息关联,频率轴数为奇数,不便于加深网络深度,且忽略时域信息;时频两域算法模型相对复杂。针对以上问题,文中提出了一种基于Flatten-CNN的语音带宽扩展算法。首先,为了充分利用语音特征和减少数据量,文中算法基于频域运行;其次,为了利用对数功率谱时间轴信息,提出了一种改进的编码器,通过引入平铺层,实现对数功率谱时频两轴特征提取;接着,为了加深网络深度,在频率轴数据处理时去掉最后一个点,还原时再补零,使频率轴数为偶数,以利于加深网络深度;最后,为了利用语音信号时域信息,在损失函数中引入时域损失。为验证文中算法的有效性,用TIMIT数据集和VCTK数据集进行了模型的训练和测试,实验结果表明,与当前主流算法相比,文中算法生成的高带宽语音质量得到提高,呈现出了更好的听觉效果。 展开更多
关键词 语音带宽扩展 平铺层 特征提取 损失 网络深度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部