期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Flatten-CNN的语音带宽扩展研究
被引量:
2
1
作者
杨俊美
雷杨
陈习坤
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第11期87-94,共8页
现有基于深度学习的语音带宽扩展算法中,时域算法语音特征提取不够精确,训练数据量大;频域算法对数功率谱特征提取未重视帧与帧之间的信息关联,频率轴数为奇数,不便于加深网络深度,且忽略时域信息;时频两域算法模型相对复杂。针对以上问...
现有基于深度学习的语音带宽扩展算法中,时域算法语音特征提取不够精确,训练数据量大;频域算法对数功率谱特征提取未重视帧与帧之间的信息关联,频率轴数为奇数,不便于加深网络深度,且忽略时域信息;时频两域算法模型相对复杂。针对以上问题,文中提出了一种基于Flatten-CNN的语音带宽扩展算法。首先,为了充分利用语音特征和减少数据量,文中算法基于频域运行;其次,为了利用对数功率谱时间轴信息,提出了一种改进的编码器,通过引入平铺层,实现对数功率谱时频两轴特征提取;接着,为了加深网络深度,在频率轴数据处理时去掉最后一个点,还原时再补零,使频率轴数为偶数,以利于加深网络深度;最后,为了利用语音信号时域信息,在损失函数中引入时域损失。为验证文中算法的有效性,用TIMIT数据集和VCTK数据集进行了模型的训练和测试,实验结果表明,与当前主流算法相比,文中算法生成的高带宽语音质量得到提高,呈现出了更好的听觉效果。
展开更多
关键词
语音带宽扩展
平铺层
时
频
两
轴
特征提取
时
频
损失
网络深度
下载PDF
职称材料
题名
基于Flatten-CNN的语音带宽扩展研究
被引量:
2
1
作者
杨俊美
雷杨
陈习坤
机构
华南理工大学电子与信息学院
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第11期87-94,共8页
基金
国家自然科学基金资助项目(61871188,61801133)。
文摘
现有基于深度学习的语音带宽扩展算法中,时域算法语音特征提取不够精确,训练数据量大;频域算法对数功率谱特征提取未重视帧与帧之间的信息关联,频率轴数为奇数,不便于加深网络深度,且忽略时域信息;时频两域算法模型相对复杂。针对以上问题,文中提出了一种基于Flatten-CNN的语音带宽扩展算法。首先,为了充分利用语音特征和减少数据量,文中算法基于频域运行;其次,为了利用对数功率谱时间轴信息,提出了一种改进的编码器,通过引入平铺层,实现对数功率谱时频两轴特征提取;接着,为了加深网络深度,在频率轴数据处理时去掉最后一个点,还原时再补零,使频率轴数为偶数,以利于加深网络深度;最后,为了利用语音信号时域信息,在损失函数中引入时域损失。为验证文中算法的有效性,用TIMIT数据集和VCTK数据集进行了模型的训练和测试,实验结果表明,与当前主流算法相比,文中算法生成的高带宽语音质量得到提高,呈现出了更好的听觉效果。
关键词
语音带宽扩展
平铺层
时
频
两
轴
特征提取
时
频
损失
网络深度
Keywords
speech bandwidth extension
tile layer
time-frequency two-axis feature extraction
time-frequency loss
network depth
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Flatten-CNN的语音带宽扩展研究
杨俊美
雷杨
陈习坤
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部