Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of...Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of self-ignition of coal at high temperature.Compared with the conventional methods,this approach involves not only kinetic properties of self-ignition of coal and temperature,but also the ambient air flow characteristics and diameter of coal particle.To testify the proposed approach,oxygen consumption rates at high temperature were measured by the programmable isothermal oven experiments.Comparisons between experimental and theoretical results indicate that the rates of oxygen depletion calculated by the proposed approach agree well with those measured from laboratory-scale experiments,which further validates the proposed approach.展开更多
Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong...Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.展开更多
基金Project(51534008) supported by the National Natural Science Foundation of China
文摘Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of self-ignition of coal at high temperature.Compared with the conventional methods,this approach involves not only kinetic properties of self-ignition of coal and temperature,but also the ambient air flow characteristics and diameter of coal particle.To testify the proposed approach,oxygen consumption rates at high temperature were measured by the programmable isothermal oven experiments.Comparisons between experimental and theoretical results indicate that the rates of oxygen depletion calculated by the proposed approach agree well with those measured from laboratory-scale experiments,which further validates the proposed approach.
基金Under the auspices of National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40101005)Science Foundation of Shandong Province, China (No. Q02E03)
文摘Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.