文摘由传统机器学习方法组成的空气质量预测模型得到了普遍应用,但是此类模型对于数据有效性,特别是时空相关数据的选取仍旧存在不足。针对深度学习输入数据有效性问题进行研究,提出了一种基于时空相似LSTM的预测模型(spatial-temporal similarity LSTM model,STS-LSTM),以便在时间和空间层面选取更加有效的数据。STS-LSTM分为前序、中序和后序三个模块,前序模块为时空相似选择输入模块,提出了格兰杰因果权重动态时间折叠(Granger causal index weighted dynamic time warping,GCWDTW)算法,用于选取具有更高时空相似性的数据;中序模块使用LSTM作为深度学习网络进行训练;后序模块根据目标站点特征选择不同的输出组合进行集成。STS-LSTM整体模型在空气质量预测误差上较现有算法提升了8%左右,经过有效性选取的数据对于模型精度达到了最高21%的提升。实验结果表明,对于有效数据的选取该算法取得了显著效果,将数据输入输出方法作为应用型深度学习网络的一部分,可以有效提升深度学习网络的最终效果。