期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ST-WaveMLP:面向交通流量预测的时空全局感知网络模型
1
作者 包锴楠 张钧波 +1 位作者 宋礼 李天瑞 《计算机科学》 CSCD 北大核心 2024年第5期27-34,共8页
交通流量预测在智能交通系统中起着至关重要的作用。精准的交通流量预测不仅能帮助城市管理者进行更好的交通管理,也能帮助人们制定合适的出行计划。然而精准预测交通流量颇具挑战性,主要难点在于如何捕获交通流量数据中复杂的时空依赖... 交通流量预测在智能交通系统中起着至关重要的作用。精准的交通流量预测不仅能帮助城市管理者进行更好的交通管理,也能帮助人们制定合适的出行计划。然而精准预测交通流量颇具挑战性,主要难点在于如何捕获交通流量数据中复杂的时空依赖性。近年来,深度学习方法已被成功应用于网格交通流量预测,主要采用深度卷积神经网络来捕获时空依赖性。但是卷积神经网络主要关注数据中空间特征的提取与整合,难以充分挖掘其中复杂的时空依赖性,而且单层卷积网络只能捕获局部空间依赖,因此,要想捕获全局空间依赖就需要对超多层的卷积网络进行堆叠,这将使整个网络模型训练收敛速度变慢。为了解决些问题,提出了一种面向交通流量预测的全局感知时空网络模型ST-WaveMLP,主要使用以多层感知机(MLP)为基础的可重复结构ST-WaveBlock来捕获相关的时空依赖。ST-WaveBlock中包含了捕获全局空间依赖和局部时间依赖的模块(SGAC),以及用于捕获局部空间依赖和全局时间依赖的模块(SLAC)。ST-WaveBlock具有较强的时空表征学习能力,通常仅用2~4个ST-WaveBlock堆叠就能有效捕获数据中的时空依赖性。最后,在4个实际交通流量数据集上进行实验验证,结果表明ST-WaveMLP具有更好的收敛性以及更高的预测精度,相较于之前最好的方法,所提方法预测精度的提升最高可达9.57%,模型收敛速度的提升最高可达30.6%。 展开更多
关键词 交通流量预测 时空依赖性 时空深度学习 时空数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部