We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers du...We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers during CHINARE 21(2004/2005) and CHINARE 29(2012/2013).The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems,and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level(a.s.l.).Radar profiles indicate an average ice thickness of 1900 m,with a maximum of 1949 m and a minimum of 1856 m,within a square area measuring approximately 2 km × 2 km in the vicinity of the station.The ice thickness beneath the station site is 1870 m.The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l.,revealing part of a mountainous topography.The ice volume in the grid is estimated to be 7.6 km^3.Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site,some disturbed internal layers are identified and traced;the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.展开更多
During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the ...During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the Kunlun station).The internal layering structure and subglacial conditions were revealed along the radar profi le.Continuous internal layers,disturbed layers,and echo-free zones(EFZs)along the profi le were identifi ed and classifi ed,and the spatial distribution was presented.Based on recent surface ice velocity data,we found that the internal layers at a depth of 200-300 m in the upper ice sheet are continuous,smooth,and nearly parallel to the ice surface topography.In addition,the thick band of continuous layers changes little with increasing latitude.At depths below 300 m,the geometric structure of the internal layers and the vertical width of the EFZ band are infl uenced by the surface ice velocity and bed topography.The relatively high disturbance,layer discontinuity,and larger EFZ band width directly correspond to a higher surface ice velocity and a sharper bed topography.In particular,we found that at a depth of 650-950 km,the Lambert Glacier Rift in the Gamburtsev Mountains has a higher ice fl ow;moreover,the revealed internal layers are disturbed or broken,and the maximal vertical width of the EFZ band most likely exceeds 2000 m.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41376192,40906101)the National Basic Research Program of China(973 Program)(Grant No.2013CBA01804 and 2012CB957702)+2 种基金the Foreign Cooperation Support Program of Chinese Arctic and Antarctic Administration,SOA,China(Grand No.IC201214)the Natural Science Foundation of Shanghai,China(Grand No.13ZR1445300)the Chinese Polar Environment Comprehensive Investigation&Assessment Programmes(CHINARE2014-01-01)
文摘We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers during CHINARE 21(2004/2005) and CHINARE 29(2012/2013).The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems,and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level(a.s.l.).Radar profiles indicate an average ice thickness of 1900 m,with a maximum of 1949 m and a minimum of 1856 m,within a square area measuring approximately 2 km × 2 km in the vicinity of the station.The ice thickness beneath the station site is 1870 m.The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l.,revealing part of a mountainous topography.The ice volume in the grid is estimated to be 7.6 km^3.Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site,some disturbed internal layers are identified and traced;the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.
基金This research is supported by the Funded by the Natural Science Foundation of China(41876230,41376192)the Major National Scientifi c Research Project on Global Changes(973 Project)(2013CBA01804)Comprehensive Investigation&Assessment Programs(CHINARE2017-01-01).
文摘During the 21st Chinese National Antarctic Research Expedition(CHINARE 21,2004/05),a radar dataset was collected using a ground-based radar system,along a traverse line from Zhongshan Station to DT401(130 km from the Kunlun station).The internal layering structure and subglacial conditions were revealed along the radar profi le.Continuous internal layers,disturbed layers,and echo-free zones(EFZs)along the profi le were identifi ed and classifi ed,and the spatial distribution was presented.Based on recent surface ice velocity data,we found that the internal layers at a depth of 200-300 m in the upper ice sheet are continuous,smooth,and nearly parallel to the ice surface topography.In addition,the thick band of continuous layers changes little with increasing latitude.At depths below 300 m,the geometric structure of the internal layers and the vertical width of the EFZ band are infl uenced by the surface ice velocity and bed topography.The relatively high disturbance,layer discontinuity,and larger EFZ band width directly correspond to a higher surface ice velocity and a sharper bed topography.In particular,we found that at a depth of 650-950 km,the Lambert Glacier Rift in the Gamburtsev Mountains has a higher ice fl ow;moreover,the revealed internal layers are disturbed or broken,and the maximal vertical width of the EFZ band most likely exceeds 2000 m.