期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
FCTNet:基于双域深度学习的公交车到站时间预测方法
1
作者
张铭泽
李轶
+2 位作者
吴文渊
石明全
王正江
《计算机科学》
CSCD
北大核心
2024年第S02期562-568,共7页
公交车到站时间预测是智能公交系统的重要组成部分,可以给乘客提供精确的到站时间,还可以帮助调度员进行更合理的调度安排。为此,提出一种基于卷积、注意力机制和FFT的对时域和频域进行双域深度学习的公交车到站时间预测算法FCTNet(FFT-...
公交车到站时间预测是智能公交系统的重要组成部分,可以给乘客提供精确的到站时间,还可以帮助调度员进行更合理的调度安排。为此,提出一种基于卷积、注意力机制和FFT的对时域和频域进行双域深度学习的公交车到站时间预测算法FCTNet(FFT-Conv-Transformer),该算法融合了傅里叶变换、卷积神经网络和注意力机制,其可以对公交车单站和多站的到站时间进行预测。其中利用傅里叶变换和卷积神经网络在频域上学习输入数据的时空特征,同时保留时域信号,利用注意力机制学习输入序列的全局依赖关系,预测最终结果。在重庆市465,506和262这3条公交线路到站时间预测实验中,FCTNet网络模型的平均绝对百分比误差和平均绝对误差优于实验对比算法,在最繁忙的465线路中FCTNet网络模型的平均相对误差相对已有最好模型降低了2.34%,平均绝对误差降低了4.59 s。
展开更多
关键词
到站预测
注意力机制
时域
频域
转换
卷积神经网络
深度神经网络
下载PDF
职称材料
题名
FCTNet:基于双域深度学习的公交车到站时间预测方法
1
作者
张铭泽
李轶
吴文渊
石明全
王正江
机构
中国科学院重庆绿色智能技术研究院自动推理与认知重庆市重点实验室
中国科学院大学重庆学院
重庆市公共交通控股集团凤筑科技有限公司
出处
《计算机科学》
CSCD
北大核心
2024年第S02期562-568,共7页
基金
重庆市院士牵头科技创新引导专项(cstc2020yszx-jcyjX0005,cstc2021yszx-jcyjX0005,cstc2022YSZX-JCX0011CSTB)。
文摘
公交车到站时间预测是智能公交系统的重要组成部分,可以给乘客提供精确的到站时间,还可以帮助调度员进行更合理的调度安排。为此,提出一种基于卷积、注意力机制和FFT的对时域和频域进行双域深度学习的公交车到站时间预测算法FCTNet(FFT-Conv-Transformer),该算法融合了傅里叶变换、卷积神经网络和注意力机制,其可以对公交车单站和多站的到站时间进行预测。其中利用傅里叶变换和卷积神经网络在频域上学习输入数据的时空特征,同时保留时域信号,利用注意力机制学习输入序列的全局依赖关系,预测最终结果。在重庆市465,506和262这3条公交线路到站时间预测实验中,FCTNet网络模型的平均绝对百分比误差和平均绝对误差优于实验对比算法,在最繁忙的465线路中FCTNet网络模型的平均相对误差相对已有最好模型降低了2.34%,平均绝对误差降低了4.59 s。
关键词
到站预测
注意力机制
时域
频域
转换
卷积神经网络
深度神经网络
Keywords
Arrival forecast
Attention mechanism
Time-frequency transformation
Convolution neural network
Deep neural network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
FCTNet:基于双域深度学习的公交车到站时间预测方法
张铭泽
李轶
吴文渊
石明全
王正江
《计算机科学》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部