针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化...针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。展开更多
针对齿轮在时变工况下的振动具有非线性、非平稳的特性,提出Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,简称VKF-OT)和去趋势波动分析(detrended fluctuation analysis,简称DFA)相结合的一种特征提取方法。该方法以...针对齿轮在时变工况下的振动具有非线性、非平稳的特性,提出Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,简称VKF-OT)和去趋势波动分析(detrended fluctuation analysis,简称DFA)相结合的一种特征提取方法。该方法以齿轮转频和啮频作为VKF-OT的提取频率,获取任意时变工况下的两类阶比信号,减弱或消除转速变化所引起的频率调制干扰,通过求解复包络得到两种频率分量的精确幅值和相位以保留齿轮状态的瞬变信息。在此基础上,引入去趋势波动法分别处理原信号、转频和啮频阶比信号,消除负载变化所产生的幅值调制干扰,对比3种信号的双对数波动函数图,选定齿轮振动信号的特征向量。通过对齿轮不同工作状态下的150组振动信号进行实验,结果表明该方法所提取的故障特征可有效地区分任意时变工况下的齿轮早期局部微弱故障。展开更多
数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题...数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。展开更多
为进一步提高Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,VKF-OT),结合去趋势波动分析(detrended fluctuation analysis,DFA)算法在时变工况下齿轮局部故障的特征区分度,提出一种以转频阶比分量为研究对象的大时间...为进一步提高Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,VKF-OT),结合去趋势波动分析(detrended fluctuation analysis,DFA)算法在时变工况下齿轮局部故障的特征区分度,提出一种以转频阶比分量为研究对象的大时间尺度特征提取方法。该方法以齿轮转频和啮频作为VKF-OT的提取频率,获取任意时变工况下的2类阶比信号,分析对比两类信号携带的尺度指数特性及其物理意义,发现转频成分相对啮频信号具有更优的局部故障表征能力,而与大时间尺度对应的小尺度指数相较于大尺度、全尺度指数具有更佳的状态区分度。最后以齿轮不同工作状态下的150组振动信号作为验证,结果表明提取的转频阶比大时间尺度特征更利于任意时变工况下的齿轮局部微弱故障的识别。展开更多
文摘针对风电机组齿轮箱在时变工况下的振动信号具有非平稳特性,提出一种谱峭度和Vold-kalman阶比跟踪(Vold-Kalman Filter Based Order Tracking,VKF-OT)相结合的故障特征提取方法。以转频和啮合频率作为VKF-OT的提取频率,获得随转速变化的阶比信号,通过阶比信号复包络直接求两种频率分量的幅值、相位,经实验分析这种方法能保留齿轮箱的瞬变信息。而后计算两种频率分量的谱峭度,以最大谱峭度对应的频率带能量与原阶比信号总能量之比作为故障特征,最后采用高斯混合模型对风电机组齿轮箱在不同工况下的150组振动信号进行特征描述,运用最大贝叶斯分类器实现故障识别。故障识别率表明该方法可有效地识别任意时变工况下的齿轮早期局部微弱故障。
文摘针对齿轮在时变工况下的振动具有非线性、非平稳的特性,提出Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,简称VKF-OT)和去趋势波动分析(detrended fluctuation analysis,简称DFA)相结合的一种特征提取方法。该方法以齿轮转频和啮频作为VKF-OT的提取频率,获取任意时变工况下的两类阶比信号,减弱或消除转速变化所引起的频率调制干扰,通过求解复包络得到两种频率分量的精确幅值和相位以保留齿轮状态的瞬变信息。在此基础上,引入去趋势波动法分别处理原信号、转频和啮频阶比信号,消除负载变化所产生的幅值调制干扰,对比3种信号的双对数波动函数图,选定齿轮振动信号的特征向量。通过对齿轮不同工作状态下的150组振动信号进行实验,结果表明该方法所提取的故障特征可有效地区分任意时变工况下的齿轮早期局部微弱故障。
文摘数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。
文摘为进一步提高Vold-Kalman阶比跟踪(Vold-Kalman filter based order tracking,VKF-OT),结合去趋势波动分析(detrended fluctuation analysis,DFA)算法在时变工况下齿轮局部故障的特征区分度,提出一种以转频阶比分量为研究对象的大时间尺度特征提取方法。该方法以齿轮转频和啮频作为VKF-OT的提取频率,获取任意时变工况下的2类阶比信号,分析对比两类信号携带的尺度指数特性及其物理意义,发现转频成分相对啮频信号具有更优的局部故障表征能力,而与大时间尺度对应的小尺度指数相较于大尺度、全尺度指数具有更佳的状态区分度。最后以齿轮不同工作状态下的150组振动信号作为验证,结果表明提取的转频阶比大时间尺度特征更利于任意时变工况下的齿轮局部微弱故障的识别。