Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried ou...Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.30390082 and 3027079)the Science and Technology Committee of Jiangsu Province,China(No.BE2005369).
文摘Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.