提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器...提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器具有不同的自由频谱范围(FSR),实现了滤波器的连续可调谐.当温度的变化范围为20-80℃时,仿真测得,FSR的变化范围为12.145-23.277 GHz.在有限脉冲响应(FIR)滤波器中引入电反馈,构成IIR滤波器,使得MPF的3 d B带宽减小,主旁瓣抑制比(MSSR)增加,其通带特性得到了改善.通过调节射频信号放大器的增益,可以改变滤波器的频率响应形状,实现滤波器的可重构特性.展开更多
A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization m...A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber(PMF) and three polarization controllers(PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges(FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response(FIR) filter. Then the 3-d B bandwidth of the MPF is reduced, and the main side-lobe suppression ratio(MSSR) is increased. By adjusting the gain of the radio frequency(RF) signal amplifier, the frequency response of the filter can be enhanced.展开更多
文摘提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器具有不同的自由频谱范围(FSR),实现了滤波器的连续可调谐.当温度的变化范围为20-80℃时,仿真测得,FSR的变化范围为12.145-23.277 GHz.在有限脉冲响应(FIR)滤波器中引入电反馈,构成IIR滤波器,使得MPF的3 d B带宽减小,主旁瓣抑制比(MSSR)增加,其通带特性得到了改善.通过调节射频信号放大器的增益,可以改变滤波器的频率响应形状,实现滤波器的可重构特性.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Tianjin Natural Science Foundation(No.14JCYBJC16500)
文摘A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber(PMF) and three polarization controllers(PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges(FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response(FIR) filter. Then the 3-d B bandwidth of the MPF is reduced, and the main side-lobe suppression ratio(MSSR) is increased. By adjusting the gain of the radio frequency(RF) signal amplifier, the frequency response of the filter can be enhanced.