It is known that there is a lag time for smoke plume induced by fires transporting from a fire origin to the location of interest underneath an unconfined and flat ceiling.This lag behavior of smoke plume also exists ...It is known that there is a lag time for smoke plume induced by fires transporting from a fire origin to the location of interest underneath an unconfined and flat ceiling.This lag behavior of smoke plume also exists for a fire under a sloped ceiling,and is fundamental to estimate the activation time of a fire detector or other fire extinguishing system.This study focuses on the lag time of smoke plume under a sloped ceiling.Based on the weak-plume theory at early-fire phase and previous studies concerning the fire plume characteristics under a sloped ceiling,a calculation method on lag time of fire plume transporting is presented in theory.Meanwhile,two dimensionless equations predicting the lag time of fire plume for steady fire and unsteady fire are proposed respectively.Furthermore,the critical time calculation equation is also proposed to determine the applicability of quasi-steady assumption for a time-dependent fire.展开更多
A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady s...A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.展开更多
The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer ...The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer equations into a system of non-dimensional equations and by applying implicit finite difference method together with Newton's linearization approximation. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction co-efficient and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50909058)"Chen Guang" Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation Science&Technology(Grant No.10CG51)
文摘It is known that there is a lag time for smoke plume induced by fires transporting from a fire origin to the location of interest underneath an unconfined and flat ceiling.This lag behavior of smoke plume also exists for a fire under a sloped ceiling,and is fundamental to estimate the activation time of a fire detector or other fire extinguishing system.This study focuses on the lag time of smoke plume under a sloped ceiling.Based on the weak-plume theory at early-fire phase and previous studies concerning the fire plume characteristics under a sloped ceiling,a calculation method on lag time of fire plume transporting is presented in theory.Meanwhile,two dimensionless equations predicting the lag time of fire plume for steady fire and unsteady fire are proposed respectively.Furthermore,the critical time calculation equation is also proposed to determine the applicability of quasi-steady assumption for a time-dependent fire.
文摘A numerical study has been carried out to investigate the effect of aspect ratio on heat transfer by natural convection of nanofluid taking Cu nano particles and the water as based fluid. The flow is laminar, steady state, axisymmetric two-dimensional in a vertical cylindrical channel filled with porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations using Darcy law and Boussinesq's approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 program. The parameters affected on the system are Rayleigh number ranging within (10≤ Ra ≤ 103), aspect ratio (1 ≤ As 〈 5) and the volume fraction (0 ≤0 〈 0.2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that as ~ increase from 0.01 to 0.2 the value of the mean Nusselt number increase 50.4% for Ra = 1,000.
文摘The Effects of pressure stress work and viscous dissipation in mixed convection flow along a vertical fiat plate have been investigated. The results are obtained by transforming the governing system of boundary layer equations into a system of non-dimensional equations and by applying implicit finite difference method together with Newton's linearization approximation. Numerical results for different values of pressure stress work parameter, viscous dissipation parameter and Prandtl number have been obtained. The velocity profiles, temperature distributions, skin friction co-efficient and the rate of heat transfer have been presented graphically for the effects of the aforementioned parameters.