事件抽取旨在从非结构化文本中检测事件类型并抽取事件要素。现有方法在处理文档级文本时仍存在局限性。这是因为文档级文本可能由多个事件组成,并且构成某一事件的事件要素通常分散在不同句子中。为应对上述挑战,提出了一种文档级事件...事件抽取旨在从非结构化文本中检测事件类型并抽取事件要素。现有方法在处理文档级文本时仍存在局限性。这是因为文档级文本可能由多个事件组成,并且构成某一事件的事件要素通常分散在不同句子中。为应对上述挑战,提出了一种文档级事件抽取反向推理模型(reverse inference model for document-level event extraction,RIDEE)。基于无触发词的设计,将文档级事件抽取转化为候选事件要素抽取和事件触发推理两个子任务,并行式抽取事件要素并检测事件类型。此外,设计了一种用于存储历史事件的事件依赖池,使得模型在处理多事件文本时可以充分利用事件之间的依赖关系。公开数据集上的实验结果表明,与现有事件抽取模型相比,RIDEE在进行文档级事件抽取时具有更优的性能。展开更多
事件抽取是自然语言处理的重要任务,而事件检测是事件抽取的关键步骤之一,其目标是检测事件的发生并对其进行分类。目前基于触发器识别的中文事件检测方法存在一词多义、词与触发词不匹配的问题,影响了事件检测模型的精度。针对此问题,...事件抽取是自然语言处理的重要任务,而事件检测是事件抽取的关键步骤之一,其目标是检测事件的发生并对其进行分类。目前基于触发器识别的中文事件检测方法存在一词多义、词与触发词不匹配的问题,影响了事件检测模型的精度。针对此问题,提出基于双重注意力的无触发词事件检测模型(Event Detection Without Triggers based on Dual Attention,EDWTDA),该模型可跳过触发词识别过程,实现在无触发词标记情况下直接判断事件类型。EDWTDA利用ALBERT改善词嵌入向量的语义表示能力,缓解一词多义问题,提高模型预测能力;采用局部注意力融合事件类型捕捉句中关键语义信息并模拟隐藏的事件触发词,解决词与触发词不匹配的问题;借助全局注意力挖掘文档中的语境信息,解决一词多义问题;最后将事件检测转化成二分类任务,解决多标签问题。同时,采用Focal loss损失函数解决转化成二分类后产生的样本不均衡问题。在ACE2005中文语料库上的实验结果表明,所提模型相比最佳基线模型JMCEE在精确率、召回率和F1-score评价指标上分别提高了3.40%,3.90%,3.67%。展开更多
文摘事件抽取旨在从非结构化文本中检测事件类型并抽取事件要素。现有方法在处理文档级文本时仍存在局限性。这是因为文档级文本可能由多个事件组成,并且构成某一事件的事件要素通常分散在不同句子中。为应对上述挑战,提出了一种文档级事件抽取反向推理模型(reverse inference model for document-level event extraction,RIDEE)。基于无触发词的设计,将文档级事件抽取转化为候选事件要素抽取和事件触发推理两个子任务,并行式抽取事件要素并检测事件类型。此外,设计了一种用于存储历史事件的事件依赖池,使得模型在处理多事件文本时可以充分利用事件之间的依赖关系。公开数据集上的实验结果表明,与现有事件抽取模型相比,RIDEE在进行文档级事件抽取时具有更优的性能。
文摘事件抽取是自然语言处理的重要任务,而事件检测是事件抽取的关键步骤之一,其目标是检测事件的发生并对其进行分类。目前基于触发器识别的中文事件检测方法存在一词多义、词与触发词不匹配的问题,影响了事件检测模型的精度。针对此问题,提出基于双重注意力的无触发词事件检测模型(Event Detection Without Triggers based on Dual Attention,EDWTDA),该模型可跳过触发词识别过程,实现在无触发词标记情况下直接判断事件类型。EDWTDA利用ALBERT改善词嵌入向量的语义表示能力,缓解一词多义问题,提高模型预测能力;采用局部注意力融合事件类型捕捉句中关键语义信息并模拟隐藏的事件触发词,解决词与触发词不匹配的问题;借助全局注意力挖掘文档中的语境信息,解决一词多义问题;最后将事件检测转化成二分类任务,解决多标签问题。同时,采用Focal loss损失函数解决转化成二分类后产生的样本不均衡问题。在ACE2005中文语料库上的实验结果表明,所提模型相比最佳基线模型JMCEE在精确率、召回率和F1-score评价指标上分别提高了3.40%,3.90%,3.67%。