期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
文档级无触发词事件抽取联合模型 被引量:7
1
作者 王雷 李瑞轩 +2 位作者 李玉华 辜希武 杨琪 《计算机科学与探索》 CSCD 北大核心 2021年第12期2327-2334,共8页
当前广为研究的在单个句子范围内的事件抽取方法,难以扩展到从分布在一篇文章里的多个句子中抽取同一事件的完整论元。对此,提出了一种基于深度学习的文档级事件抽取联合模型。首先,利用基于多头自注意力机制的实体识别模块逐句识别文... 当前广为研究的在单个句子范围内的事件抽取方法,难以扩展到从分布在一篇文章里的多个句子中抽取同一事件的完整论元。对此,提出了一种基于深度学习的文档级事件抽取联合模型。首先,利用基于多头自注意力机制的实体识别模块逐句识别文档中的实体并输出其类型。然后,通过定义不同论元角色对事件类型的重要度训练事件类型检测模块,实现在无触发词条件下定位事件表述中心句并判断事件类型。最后,事件论元抽取模块通过在实体语义向量中嵌入实体的类型信息和实体到事件中心句的距离信息,并输入Transformer网络与上下文交换信息,实现在文档范围内抽取全部事件论元。通过对上述三个子模块进行联合训练,进一步实现了端到端的事件抽取,避免了管道式方法的误差传递。在公开数据集上的实验结果表明:在单事件条件下,该模型取得了86.3%的F1值,优于当前最佳的文档级事件抽取方法,并且具有优秀的模型训练速度。 展开更多
关键词 文档级事件抽取 触发 联合模型 实体识别 事件检测
下载PDF
文档级事件抽取反向推理模型
2
作者 纪婉婷 马宇航 +2 位作者 鲁闻一 王俊陆 宋宝燕 《计算机工程与应用》 CSCD 北大核心 2024年第5期122-129,共8页
事件抽取旨在从非结构化文本中检测事件类型并抽取事件要素。现有方法在处理文档级文本时仍存在局限性。这是因为文档级文本可能由多个事件组成,并且构成某一事件的事件要素通常分散在不同句子中。为应对上述挑战,提出了一种文档级事件... 事件抽取旨在从非结构化文本中检测事件类型并抽取事件要素。现有方法在处理文档级文本时仍存在局限性。这是因为文档级文本可能由多个事件组成,并且构成某一事件的事件要素通常分散在不同句子中。为应对上述挑战,提出了一种文档级事件抽取反向推理模型(reverse inference model for document-level event extraction,RIDEE)。基于无触发词的设计,将文档级事件抽取转化为候选事件要素抽取和事件触发推理两个子任务,并行式抽取事件要素并检测事件类型。此外,设计了一种用于存储历史事件的事件依赖池,使得模型在处理多事件文本时可以充分利用事件之间的依赖关系。公开数据集上的实验结果表明,与现有事件抽取模型相比,RIDEE在进行文档级事件抽取时具有更优的性能。 展开更多
关键词 文档级事件抽取 反向推理 触发 事件依赖池
下载PDF
基于双重注意力的无触发词中文事件检测
3
作者 程永 毛莺池 +2 位作者 万旭 王龙宝 朱敏 《计算机科学》 CSCD 北大核心 2023年第1期276-284,共9页
事件抽取是自然语言处理的重要任务,而事件检测是事件抽取的关键步骤之一,其目标是检测事件的发生并对其进行分类。目前基于触发器识别的中文事件检测方法存在一词多义、词与触发词不匹配的问题,影响了事件检测模型的精度。针对此问题,... 事件抽取是自然语言处理的重要任务,而事件检测是事件抽取的关键步骤之一,其目标是检测事件的发生并对其进行分类。目前基于触发器识别的中文事件检测方法存在一词多义、词与触发词不匹配的问题,影响了事件检测模型的精度。针对此问题,提出基于双重注意力的无触发词事件检测模型(Event Detection Without Triggers based on Dual Attention,EDWTDA),该模型可跳过触发词识别过程,实现在无触发词标记情况下直接判断事件类型。EDWTDA利用ALBERT改善词嵌入向量的语义表示能力,缓解一词多义问题,提高模型预测能力;采用局部注意力融合事件类型捕捉句中关键语义信息并模拟隐藏的事件触发词,解决词与触发词不匹配的问题;借助全局注意力挖掘文档中的语境信息,解决一词多义问题;最后将事件检测转化成二分类任务,解决多标签问题。同时,采用Focal loss损失函数解决转化成二分类后产生的样本不均衡问题。在ACE2005中文语料库上的实验结果表明,所提模型相比最佳基线模型JMCEE在精确率、召回率和F1-score评价指标上分别提高了3.40%,3.90%,3.67%。 展开更多
关键词 双重注意力 触发 中文事件检测 ACE2005 二分类
下载PDF
一种面向公安警情领域的事件抽取方法 被引量:1
4
作者 邓秋严 谢松县 +3 位作者 曾道建 郑菲 程琛 彭立宏 《中文信息学报》 CSCD 北大核心 2022年第9期93-101,共9页
公安警情领域存在大量警情文本数据,如何从不同源、不同格式的警情文本中抽取出案情相关信息是公安情报信息处理工作的一个重要内容。基于公安警情领域数据特点,该文提出了一种结合无触发词事件识别和基于阅读理解的事件论元角色分类的... 公安警情领域存在大量警情文本数据,如何从不同源、不同格式的警情文本中抽取出案情相关信息是公安情报信息处理工作的一个重要内容。基于公安警情领域数据特点,该文提出了一种结合无触发词事件识别和基于阅读理解的事件论元角色分类的事件抽取方法。该方法首先采用无触发词方法实现事件识别;在事件识别结果的基础上,通过阅读理解方式实现对事件论元角色的分类。实验表明,该文提出的方法在不标注触发词情况下在警情领域数据中能更好地实现事件信息抽取。 展开更多
关键词 事件抽取 触发 阅读理解
下载PDF
类型感知的汉越跨语言事件检测方法 被引量:1
5
作者 张磊 高盛祥 +2 位作者 余正涛 刘畅 陈瑞清 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第5期803-811,共9页
针对汉越跨语言事件检测缺少平行语料,越南语标注困难,需要统一跨语言语义空间,且触发词存在较大的歧义和局限性等问题,提出基于事件类型感知的汉越跨语言事件检测方法。构造类型感知的注意力机制突显事件特征,融入汉越的词位置、词性... 针对汉越跨语言事件检测缺少平行语料,越南语标注困难,需要统一跨语言语义空间,且触发词存在较大的歧义和局限性等问题,提出基于事件类型感知的汉越跨语言事件检测方法。构造类型感知的注意力机制突显事件特征,融入汉越的词位置、词性和命名实体信息,并通过梯度反转(gradient reversal layer,GRL),实现有标注汉语和无标注越南语之间的对抗训练,将从大量汉语新闻文本中学到的语言无关的事件类型特征融入到联合特征提取器中,进行汉越跨语言的无触发词事件检测,缓解越南语的数据稀缺和触发词的局限性。实验中提出的方法较最好的基线模型在准确率上提升了4.32%。 展开更多
关键词 汉越跨语言事件检测 触发 事件类型感知 梯度反转 语言对抗
下载PDF
融合句法信息的无触发词事件检测方法
6
作者 汪翠 张亚飞 +2 位作者 郭军军 高盛祥 余正涛 《计算机应用》 CSCD 北大核心 2021年第12期3534-3539,共6页
事件检测(ED)是信息抽取领域中最重要的任务之一,旨在识别文本中特定事件类型的实例。现有的ED方法通常采用邻接矩阵来表示句法依存关系,然而邻接矩阵往往需要借助图卷积网络(GCN)进行编码来获取句法信息,由此增加了模型的复杂度。为此... 事件检测(ED)是信息抽取领域中最重要的任务之一,旨在识别文本中特定事件类型的实例。现有的ED方法通常采用邻接矩阵来表示句法依存关系,然而邻接矩阵往往需要借助图卷积网络(GCN)进行编码来获取句法信息,由此增加了模型的复杂度。为此,提出了融合句法信息的无触发词事件检测方法。通过将依赖父词及其上下文转换为位置标记向量,并在模型源端以无参数的方式融入依赖子词的单词嵌入来加强上下文的语义表征,而不需要经过GCN进行编码;此外,针对触发词的标注费时费力的问题,设计了基于多头注意力机制的类型感知器,以对句子中潜在的触发词进行建模,实现无触发词的事件检测。为了验证所提方法的性能,在ACE2005数据集以及低资源越南语数据集上进行了实验。其中,在ACE2005数据集上与图变换网络事件检测(GTN-ED)方法相比,所提方法的F1值提升了3.7%;在越南语数据集上,与二分类的方法类型感知偏差注意机制神经网络(TBNNAM)相比,所提方法的F1值提升了9%。结果表明,通过在Transformer中融入句法信息能有效地连接句子中分散的事件信息来提高事件检测的准确性。 展开更多
关键词 事件检测 句法信息 参数 触发 类型感知器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部