In this paper we define the tensor products of spaces of exponential type vectors of closed unbounded operators in Banach spaces. Using the real method of interpolation (K-functional) we prove the interpolation theo...In this paper we define the tensor products of spaces of exponential type vectors of closed unbounded operators in Banach spaces. Using the real method of interpolation (K-functional) we prove the interpolation theorems that permit to characterize of tensor products of spaces of exponential type vectors, We show an application of abstract results to the theory of regular elliptic operators on bounded domains. For such operators the exponential type vectors are root vectors. Thus we describe the tensor products of root vectors of regular elliptic operators on bounded domains.展开更多
设A是Banach空间X上的闭算子,记C~∞(A)=(?)D(A^n).x∈C~∞(A)称为A的一个n=1整因子(或解析因子),如果sum from n=0 to ∞(t^n/n~!)||A^nX||<∞对所有t>0成立.A的全体整因子记作ε(A).众所周知,自伴算子有稠密的整因子集,本文利...设A是Banach空间X上的闭算子,记C~∞(A)=(?)D(A^n).x∈C~∞(A)称为A的一个n=1整因子(或解析因子),如果sum from n=0 to ∞(t^n/n~!)||A^nX||<∞对所有t>0成立.A的全体整因子记作ε(A).众所周知,自伴算子有稠密的整因子集,本文利用近几年发展起来的C-半群理论证明了更广的(无界)正规算子亦有此性质(定理6).从而当A是正规算子时,对某个稠密集中的初始值x,抽象Cauchy问题(ACP)存在整解(指可扩充为整函数的解).而且这样得到的解是唯一的和deLaubenfels意义下适定的.本文始终假定C是单的有界算子,ImC表C的值域.定义1 Banach空间X上的有界算子族称为一个整C-群,如果Ζ→W(Ζ)是整函数且W(O)=C,CW(Ζ_1+Ζ_2)=W(Ζ_1)W(Ζ_2)(Ζ_1+Ζ_2∈C)整C-群的生成元定义为C-半群的生成元.文献指出,讨论C-半群与ACP之间关系时起作用的不是生成元而是次生成元.展开更多
文摘In this paper we define the tensor products of spaces of exponential type vectors of closed unbounded operators in Banach spaces. Using the real method of interpolation (K-functional) we prove the interpolation theorems that permit to characterize of tensor products of spaces of exponential type vectors, We show an application of abstract results to the theory of regular elliptic operators on bounded domains. For such operators the exponential type vectors are root vectors. Thus we describe the tensor products of root vectors of regular elliptic operators on bounded domains.
文摘设A是Banach空间X上的闭算子,记C~∞(A)=(?)D(A^n).x∈C~∞(A)称为A的一个n=1整因子(或解析因子),如果sum from n=0 to ∞(t^n/n~!)||A^nX||<∞对所有t>0成立.A的全体整因子记作ε(A).众所周知,自伴算子有稠密的整因子集,本文利用近几年发展起来的C-半群理论证明了更广的(无界)正规算子亦有此性质(定理6).从而当A是正规算子时,对某个稠密集中的初始值x,抽象Cauchy问题(ACP)存在整解(指可扩充为整函数的解).而且这样得到的解是唯一的和deLaubenfels意义下适定的.本文始终假定C是单的有界算子,ImC表C的值域.定义1 Banach空间X上的有界算子族称为一个整C-群,如果Ζ→W(Ζ)是整函数且W(O)=C,CW(Ζ_1+Ζ_2)=W(Ζ_1)W(Ζ_2)(Ζ_1+Ζ_2∈C)整C-群的生成元定义为C-半群的生成元.文献指出,讨论C-半群与ACP之间关系时起作用的不是生成元而是次生成元.