期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
半监督聚类的若干新进展 被引量:50
1
作者 李昆仑 曹铮 +2 位作者 曹丽苹 张超 刘明 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期735-742,共8页
半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法的一些新进展,包括基于约束的方法、基于距离的方法和基于距离与约束的融合方法.然后提出一种基于约束的... 半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法的一些新进展,包括基于约束的方法、基于距离的方法和基于距离与约束的融合方法.然后提出一种基于约束的半监督模糊C-means聚类算法.实验表明,该算法与传统的模糊C-means及半监督K-means方法相比,具有更好的聚类精度. 展开更多
关键词 半监督聚类 模糊C一均值(FCM) 记数 记数
原文传递
精密进给系统热误差的协同训练支持向量机回归建模与补偿方法 被引量:8
2
作者 朱星星 赵亮 +4 位作者 雷默涵 王帅 凌正 杨军 梅雪松 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第10期40-47,共8页
针对精密进给系统热误差的数据稀缺且获取成本高的问题,提出了一种基于协同训练支持向量机回归算法(COSVR)的精密进给系统热误差建模与补偿方法。通过整合标记数据(温度和热误差)及未标记温度数据建立热误差模型,利用基于西门子840D数... 针对精密进给系统热误差的数据稀缺且获取成本高的问题,提出了一种基于协同训练支持向量机回归算法(COSVR)的精密进给系统热误差建模与补偿方法。通过整合标记数据(温度和热误差)及未标记温度数据建立热误差模型,利用基于西门子840D数控系统开发的补偿方法进行补偿。以精密镗床双驱动滚珠丝杠进给系统X轴为研究对象,进行热特性实验,获取24 m/min进给速度下的标记数据和12 m/min进给速度下的未标记温度数据,利用COSVR整合所有数据建立热误差模型,并通过遗传算法优化的支持向量机回归算法(GA-SVR)仅选用标记数据建立对照模型,获取18 m/min进给速度下的标记数据用于模型性能测试。结果表明:与GA-SVR模型相比,COSVR模型的均方根误差减少了34.14%,且在100 min和520 min时的误差范围分别减小了62.62%和55.85%。COSVR模型具有更好的预测性能且能更有效地降低热误差,进一步提高了精密进给系统热误差的建模精度。 展开更多
关键词 精密镗床 进给系统 协同训练 支持向量机回归 记数
下载PDF
基于改进粒子群优化的无标记数据鲁棒聚类算法 被引量:6
3
作者 茹蓓 朱楠 贺新征 《计算机应用研究》 CSCD 北大核心 2017年第6期1626-1630,1635,共6页
已有的聚类算法大多仅考虑单一的目标,导致对某些形状的数据集性能较弱,为此提出一种基于改进粒子群优化的无标记数据鲁棒聚类算法。优化阶段:首先采用多目标粒子群优化的经典形式生成聚类解集合;然后使用K-means算法生成随机分布的初... 已有的聚类算法大多仅考虑单一的目标,导致对某些形状的数据集性能较弱,为此提出一种基于改进粒子群优化的无标记数据鲁棒聚类算法。优化阶段:首先采用多目标粒子群优化的经典形式生成聚类解集合;然后使用K-means算法生成随机分布的初始化种群,并为其分配随机初始化的速度;最终,采用maximin策略确定帕累托最优解。决策阶段:测量帕累托解集与理想解的距离,将距离最短的帕累托解作为最终聚类解。对比实验结果表明,本算法对不同形状的数据集均可获得较优的类簇数量,对目标问题的复杂度具有较好的鲁棒性。 展开更多
关键词 多目粒子群优化 聚类算法 鲁棒性 帕累托最优解 记数
下载PDF
基于边增强一致性与半监督学习的谣言检测研究
4
作者 张岩珂 但志平 +1 位作者 李琳 鲁雨洁 《现代电子技术》 北大核心 2024年第17期129-135,共7页
针对现有的谣言检测方法对故意伪造的突发事件检测表现不佳的现象,同时考虑到现实中突发事件的标记数据难以获得,从而导致现有的监督学习方法性能受限,提出基于边增强一致性与半监督学习的谣言检测方法(EECS)。首先通过边增强方法提高... 针对现有的谣言检测方法对故意伪造的突发事件检测表现不佳的现象,同时考虑到现实中突发事件的标记数据难以获得,从而导致现有的监督学习方法性能受限,提出基于边增强一致性与半监督学习的谣言检测方法(EECS)。首先通过边增强方法提高数据质量,然后分离出高一致性特征与低一致性特征来深入挖掘内联关系,使用双通道图卷积网络捕获特征,依据半监督学习方法有效利用大量无标记数据增强模型的泛化性,最后采用加权的有监督交叉熵损失和无监督一致性损失优化模型。实验结果表明,在公开的Twitter15、Twitter16和Weibo数据集上,所提出的模型在30%标记样本下准确率达到87.8%、89.5%和95.0%,使用少量标记样本便可达到优异的成绩。 展开更多
关键词 谣言检测 半监督 边增强 双通道图卷积 记数 一致性特征
下载PDF
基于图的半监督协同训练算法 被引量:5
5
作者 郭涛 李贵洋 兰霞 《计算机工程》 CAS CSCD 2012年第13期163-165,168,共4页
在分类器训练过程中,无标记数据的引入容易产生噪音,从而降低分类精度。为此,提出一种基于图的置信度估计半监督协同训练算法。利用样本数据自身的结构信息,计算无标记样本所属类别概率。采用多分类器对无标记数据进行置信度估计,以提... 在分类器训练过程中,无标记数据的引入容易产生噪音,从而降低分类精度。为此,提出一种基于图的置信度估计半监督协同训练算法。利用样本数据自身的结构信息,计算无标记样本所属类别概率。采用多分类器对无标记数据进行置信度估计,以提高无标记数据挑选标准,减少噪音数据的引入。在UCI数据集上的对比实验验证了该算法的有效性。 展开更多
关键词 半监督学习 协同训练 置信度 分类 记数
下载PDF
基于遗传算法的噪声过滤协同训练算法 被引量:1
6
作者 郭涛 李贵洋 兰霞 《计算机工程与设计》 CSCD 北大核心 2014年第5期1807-1810,1832,共5页
为解决分类器训练过程中由于无标记数据的引入,容易产生噪音、降低分类精度的问题,提出了基于遗传算法的噪声过滤协同训练算法(CGA)。充分利用遗传算法的寻优功能,产生高适应度的分类规则,达到辅助协同训练算法挑选有价值的无标记数据,... 为解决分类器训练过程中由于无标记数据的引入,容易产生噪音、降低分类精度的问题,提出了基于遗传算法的噪声过滤协同训练算法(CGA)。充分利用遗传算法的寻优功能,产生高适应度的分类规则,达到辅助协同训练算法挑选有价值的无标记数据,降低噪音的引入,确保参与协同训练分类器的精度和性能得到有效更新的目的。在UCI数据集上的实验验证了该算法的有效性。 展开更多
关键词 遗传算法 半监督学习 协调训练 噪声过滤 记数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部