In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digi...In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.展开更多
Based on horizontal-component digital seismograms recorded on 6 stations of the Yunnan Regional Digital Network, we inversed the inelastic attenuation in the source region of the Shidian swarm using the Atkinson metho...Based on horizontal-component digital seismograms recorded on 6 stations of the Yunnan Regional Digital Network, we inversed the inelastic attenuation in the source region of the Shidian swarm using the Atkinson method and the site responses of the 6 stations 200kin around the Shidian epicenters using the Moya method. The observational seismic waveform data were corrected by removing the propagation, instrument and site effects before the source parameters of the Shidian swarm in 2001 were determined using genetic algorithms. The results are as follows: ( 1 ) There is a linear relation between seismic moment and local magnitude. The seismic moment is between 1×10^12 and 10^14 N·m. The rupture radius of the seismic focus varies from 157m to 973m. The seismic moment and the rupture radius maintain a linear correlation. (2) The corner frequency increases as the seismic moment decreases. Based on the expression between corner frequency and seismic moment using least squares fitting, we can obtain the estimated value of the corner frequency. The time-varying value of the calculated corner frequency minus the estimated corner frequency shows that there were continuous high and low anomalies before the strong aftershocks. (3) The seismic stress drop is in the range of 0.07-1.55MPa. The stress drop seems independent of the local magnitude. The variation of stress drops is high before the occurrence of the strong aftershocks. (4) The depth of aftershocks is mostly in a range from 5kin to 10km, which means that energy release of aftershocks is mainly concentrated in this range of depth.展开更多
基金National Natural Science Foundation of China (40274011 40074020) MOST (2001BA601B02) and Joint Seis-mological Science Foundation of China (102068).
文摘In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.
基金the State Science and Technology Programof Tackle Key Problemfor the tenth "Five-Year Plan" of China (2004BA601B01-04-03) and the Youth Fund of Earthquake Administration of Yunnan Province ,China
文摘Based on horizontal-component digital seismograms recorded on 6 stations of the Yunnan Regional Digital Network, we inversed the inelastic attenuation in the source region of the Shidian swarm using the Atkinson method and the site responses of the 6 stations 200kin around the Shidian epicenters using the Moya method. The observational seismic waveform data were corrected by removing the propagation, instrument and site effects before the source parameters of the Shidian swarm in 2001 were determined using genetic algorithms. The results are as follows: ( 1 ) There is a linear relation between seismic moment and local magnitude. The seismic moment is between 1×10^12 and 10^14 N·m. The rupture radius of the seismic focus varies from 157m to 973m. The seismic moment and the rupture radius maintain a linear correlation. (2) The corner frequency increases as the seismic moment decreases. Based on the expression between corner frequency and seismic moment using least squares fitting, we can obtain the estimated value of the corner frequency. The time-varying value of the calculated corner frequency minus the estimated corner frequency shows that there were continuous high and low anomalies before the strong aftershocks. (3) The seismic stress drop is in the range of 0.07-1.55MPa. The stress drop seems independent of the local magnitude. The variation of stress drops is high before the occurrence of the strong aftershocks. (4) The depth of aftershocks is mostly in a range from 5kin to 10km, which means that energy release of aftershocks is mainly concentrated in this range of depth.