期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结构门控与纹理联合引导的生成对抗壁画修复 被引量:2
1
作者 陈永 陶美风 赵梦雪 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期1-11,共11页
现有深度学习修复方法修复壁画时,受结构和纹理影响较大,修复结果易出现结构紊乱和纹理模糊等问题.针对这些问题,提出了一种结构门控融合与纹理联合引导的生成对抗壁画修复模型.首先,构建由结构引导编码子网络和纹理引导解码子网络构成... 现有深度学习修复方法修复壁画时,受结构和纹理影响较大,修复结果易出现结构紊乱和纹理模糊等问题.针对这些问题,提出了一种结构门控融合与纹理联合引导的生成对抗壁画修复模型.首先,构建由结构引导编码子网络和纹理引导解码子网络构成的生成网络,利用结构信息引导编码,并通过门控特征增强边缘轮廓信息.然后,设计纹理引导器和方向注意力模块提取分层纹理特征,引导解码器重构修复,提高壁画的纹理一致性.最后,采用跳跃连接促进结构和纹理的特征互补,并利用谱归一化马尔科夫判别模型对抗完成壁画修复.对真实敦煌壁画数字化修复实验的结果表明:所提方法主客观评价均优于比较算法,修复结果更加清晰、自然. 展开更多
关键词 图像处理 壁画修复 结构纹理引导 方向注意力 门控融合
下载PDF
基于注意力机制的变电站作业场景三维目标检测 被引量:1
2
作者 高伟 何搏洋 +4 位作者 张婷 郭美青 刘军 王慧民 张兴忠 《激光与光电子学进展》 CSCD 北大核心 2022年第22期157-165,共9页
在变电站场景中,作业人员与危险设备的空间距离感知是安全管控任务的基本问题。随着激光雷达和三维(3D)视觉理论的发展,3D点云目标检测可为下游空间距离度量任务提供必要的技术支撑。针对变电站场景下背景复杂、设备遮挡等因素引起的目... 在变电站场景中,作业人员与危险设备的空间距离感知是安全管控任务的基本问题。随着激光雷达和三维(3D)视觉理论的发展,3D点云目标检测可为下游空间距离度量任务提供必要的技术支撑。针对变电站场景下背景复杂、设备遮挡等因素引起的目标检测不准的问题,基于PointNet++模型,在局部特征提取阶段引入改进的注意力模块,提出了一种适用于变电站作业场景的3D目标检测网络PowerNet。首先经过两级局部特征提取,获取每个局部区域中的细粒度特征;其次通过mini-pointnet将所有局部特征编码成特征向量,得到全局特征;最后由全连接层输出预测结果。考虑到变电站点云数据中前景点与背景点数量差距较大,PowerNet采用Focal损失计算分类损失,使网络更加关注前景点特征信息。在自建数据集上的实验结果表明,PowerNet的均值平均精度(mAP)值达到0.735,高于其他模型,可直接在下游安全管控任务中应用。 展开更多
关键词 图像处理 变电站作业场景 三维目标检测 点云 通道方向注意力 方向注意力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部