期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测
1
作者
马志远
王勃
+1 位作者
杨茂
王钊
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第9期3934-3943,共10页
为了在数据量不足的情况下增强新投运风电场的功率预测能力,提出了一种基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测方法。首先,在数据增强阶段,引入投运前气象站的测风数据,基于风电场的时空相关性关系,通过时序特征...
为了在数据量不足的情况下增强新投运风电场的功率预测能力,提出了一种基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测方法。首先,在数据增强阶段,引入投运前气象站的测风数据,基于风电场的时空相关性关系,通过时序特征构建和场景匹配,从时空2个维度对预报风速进行初步修正。然后,对初步修正后的结果进行数据重构,以重构后的数据作为下一次集成的输入,构建多重集成模型对预报风速进行二次修正。最后,在功率预测阶段,基于一阶段的修正结果,通过门控循环单元(gate recurrent unit,GRU)得到预测功率。算例结果表明,所提方法使预报风速的均方根误差降低了1.038m/s,功率预测精度提升了4.718%。论文研究可为新投运风电场的短期功率预测提供参考。
展开更多
关键词
功率预测
风速修正
集成学习
迁移学习
时空相关性
新
投运
风电场
下载PDF
职称材料
题名
基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测
1
作者
马志远
王勃
杨茂
王钊
机构
现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学)
可再生能源并网全国重点实验室(中国电力科学研究院有限公司)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第9期3934-3943,共10页
基金
国家重点研发计划(大规模风电/光伏多时间尺度供电能力预测技术)(2022YFB2403000)。
文摘
为了在数据量不足的情况下增强新投运风电场的功率预测能力,提出了一种基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测方法。首先,在数据增强阶段,引入投运前气象站的测风数据,基于风电场的时空相关性关系,通过时序特征构建和场景匹配,从时空2个维度对预报风速进行初步修正。然后,对初步修正后的结果进行数据重构,以重构后的数据作为下一次集成的输入,构建多重集成模型对预报风速进行二次修正。最后,在功率预测阶段,基于一阶段的修正结果,通过门控循环单元(gate recurrent unit,GRU)得到预测功率。算例结果表明,所提方法使预报风速的均方根误差降低了1.038m/s,功率预测精度提升了4.718%。论文研究可为新投运风电场的短期功率预测提供参考。
关键词
功率预测
风速修正
集成学习
迁移学习
时空相关性
新
投运
风电场
Keywords
power prediction
wind speed correction
integrated learning
transfer learning
spatio-temporal correlation
newly grid-connected wind farms
分类号
TM614 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于二维风速修正和多重集成的两阶段迁移学习短期风电功率预测
马志远
王勃
杨茂
王钊
《高电压技术》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部