As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive,...As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.展开更多
Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination...Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.展开更多
基金supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.16KJB510009 and No.17KJB510017)Jiangsu Province Natural Science Foundation of China (BK20150228)
文摘As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of -10^7. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.
基金supported by the Project No.CB/2012/178748 CONACYT/México
文摘Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.