期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
双稀疏字典和FISTA的地震数据去噪 被引量:12
1
作者 张良 韩立国 +2 位作者 方金伟 张盼 刘争光 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第7期2671-2683,共13页
地震数据的随机噪声去除是地震数据处理中的一项重要步骤,双稀疏字典提供了两层稀疏模型,比单层稀疏模型可以更好地去除噪声.该方法首先利用contourlet变换对地震数据进行稀疏表示,然后在contourlet域中使用快速迭代收缩阈值算法(fast i... 地震数据的随机噪声去除是地震数据处理中的一项重要步骤,双稀疏字典提供了两层稀疏模型,比单层稀疏模型可以更好地去除噪声.该方法首先利用contourlet变换对地震数据进行稀疏表示,然后在contourlet域中使用快速迭代收缩阈值算法(fast iterative shrinkage-thresholding algorithm,FISTA)对初始字典系数进行更新,接着采用数据驱动紧标架(data-driven tight frame,DDTF)在contourlet域中得到DDTF字典并通过FISTA得到更新后的字典系数,最后通过DDTF字典和更新后的字典系数获得新的contourlet系数,并对新的contourlet系数进行硬阈值和contourlet反变换得到去噪后的数据.通过模拟数据和实际数据的实验证明:与固定基变换去噪方法相比,该方法可以自适应地对地震数据进行稀疏表示,在地震数据较为复杂时得到更高的信噪比;与字典学习去噪方法相比,该方法不仅拥有较快的去噪速度,而且克服了字典学习因为缺少先验约束造成瑕疵的缺点. 展开更多
关键词 随机噪声 双稀疏字典 CONTOURLET变换 数据驱动 快速迭代收缩阈值算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部