期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测
被引量:
5
1
作者
Paulo FLORES
张昭
《智慧农业(中英文)》
2021年第2期23-34,共12页
小麦在生长过程中发生倒伏会严重影响其产量,因此实时且准确地对小麦倒伏状况监测有很重要的意义。传统的方法采用手工方式生成数据集,不仅效率低、易出错,而且生成的数据集不准确。针对这一问题,本研究提出了一种基于图像处理的自动数...
小麦在生长过程中发生倒伏会严重影响其产量,因此实时且准确地对小麦倒伏状况监测有很重要的意义。传统的方法采用手工方式生成数据集,不仅效率低、易出错,而且生成的数据集不准确。针对这一问题,本研究提出了一种基于图像处理的自动数据集生成方法。首先利用无人机在15、46和91 m三个高度采集图像数据;采集完数据后,根据无倒伏、倒伏面积<50%和倒伏面积>50%的标准对每一块地的小麦倒伏情况进行人工评估;采用三种机器学习(支持向量机、随机森林、K近邻)和三种深度学习(ResNet101、GoogLeNet、VGG16)算法对小麦倒伏检测情况进行分类。结果显示,ResNet101的分类结果优于随机森林,并且在91 m高度采集的数据分类精度并不低于在15 m高度采集的数据。本研究证明了针对在91 m高度采集的无人机图像,采用ResNet101对小麦倒伏率检测是一种有效的替代人工检测的方法,其检测精度达到了75%。
展开更多
关键词
小麦倒伏率
机器学习
深度学习
数据
采集
高度
无人机
ResNet101
下载PDF
职称材料
题名
基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测
被引量:
5
1
作者
Paulo FLORES
张昭
机构
北达科他州州立大学农业与生物系统工程系
出处
《智慧农业(中英文)》
2021年第2期23-34,共12页
基金
North Dakota Agricultural Experiment Station Precision Agriculture Graduate Research Assistantship(6064-21660-001-32S)
USDAAgricultural Research Service Project(435589)。
文摘
小麦在生长过程中发生倒伏会严重影响其产量,因此实时且准确地对小麦倒伏状况监测有很重要的意义。传统的方法采用手工方式生成数据集,不仅效率低、易出错,而且生成的数据集不准确。针对这一问题,本研究提出了一种基于图像处理的自动数据集生成方法。首先利用无人机在15、46和91 m三个高度采集图像数据;采集完数据后,根据无倒伏、倒伏面积<50%和倒伏面积>50%的标准对每一块地的小麦倒伏情况进行人工评估;采用三种机器学习(支持向量机、随机森林、K近邻)和三种深度学习(ResNet101、GoogLeNet、VGG16)算法对小麦倒伏检测情况进行分类。结果显示,ResNet101的分类结果优于随机森林,并且在91 m高度采集的数据分类精度并不低于在15 m高度采集的数据。本研究证明了针对在91 m高度采集的无人机图像,采用ResNet101对小麦倒伏率检测是一种有效的替代人工检测的方法,其检测精度达到了75%。
关键词
小麦倒伏率
机器学习
深度学习
数据
采集
高度
无人机
ResNet101
Keywords
wheat lodging ratio
machine learning
deep learning
mission height
UAS
ResNet101
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
S512.1 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于无人机图像以及不同机器学习和深度学习模型的小麦倒伏率检测
Paulo FLORES
张昭
《智慧农业(中英文)》
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部