Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measure-ment technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam...Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measure-ment technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble’s images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter re-lated to the mass of the gas inside the bubble, was obtained at the same time.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10434070 and 10174036).
文摘Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measure-ment technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble’s images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter re-lated to the mass of the gas inside the bubble, was obtained at the same time.